Uni Innsbruck Informatik - 1

Peer-to-Peer Systems

Security and Reliability

Michael Welzl michael.welzl@uibk.ac.at

DPS NSG Team http://dps.uibk.ac.at/nsg
Institute of Computer Science
University of Innsbruck, Austria

Uni Innsbruck Informatik - 2

Qutline

e This block addresses the question:
What if something goes wrong?

« What can go wrong?
- Attackers can infiltrate the system
- Nodes can fail

« Why would nodes fail?
- Technical reasons (e.g. link outage)
- Denial-of-Service attacks
- Censorship

« Reliability / resilience and security are related issues

Uni Innsbruck Informatik - 3

Security in DHTs

DHT architectures assumes a trusted system
- True in corporate environments, but not on the Internet

One solution: Central certificate-granting authority
- Used by Pastry and its related projects
- Constrains membership in DHT

One attack: Return incorrect data
- Easy to avoid through cryptographic techniques
- Detect and ignore non-authentic data

Focus: Attacks that prevent participants from finding the data
- Threatens the liveliness of the system

Uni Innsbruck Informatik - 4

DHT Components and adversary model

DHTs have the following components:

Key identifier space

Node identifier space

Rules for associating keys to nodes

Per-node routing tables that refer to other nodes

Rules for updating routing tables as nodes join and leave

U AN W N =

Any of the above may be the target of the attack from an adversary
e Adversaries are participants in DHT that do not follow protocol correctly

Adeversary model - assumptions:
« Malicious node can generate arbitrary packets
- Includes forged source IP address

e Can receive only packets addressed to itself
- Not able to overhear communications between other nodes
e Malicious nodes can conspire together, but still limited as above

Uni Innsbruck Informatik - 5

Types of Attacks

1. Routing attacks
2. Attack against data storage
3. Miscellaneous attacks

e First goal: Detect attack
- Violation of invariants or contracts

e What to do when an attack is detected?
- |Is other node malicious?

- Did other node simply not detect attack?

e Achieving verifiability is vital

Uni Innsbruck Informatik - 6

Routing Attacks

e Routing is responsible for maintaining routing tables and sending
messages to correct nodes

- Routing must function correctly
- Define invariants and check them

« Attacker can incorrectly forward messages
- But: Each hop should get “closer” to destination
- Querying node should check this
- Allow querying node to observe lookup process
» For example, processing messages recursively hides this

» Attacker can claim that wrong node is responsible node
- Querying node is “far away”, cannot verify this
- Assign keys to nodes in a verifiable way
- Often: Assign node IDs in a verifiable way (e.g., IP address)
» For example, CAN lets node pick its own ID...

Uni Innsbruck Informatik - 7

More Routing Attacks

» Attacker can send incorrect routing updates
- Blatantly wrong updates can be detected
- If DHT allows several choices for next hop
» Attacker can pick a “bad” node
» Not necessarily a problem with correctness, only performance
» Can be a problem for some applications (anonymity)
- Server selection can be abused

» Attacker can partition network

- If new node contacts attacker first, attacker can partition network (can even
hijack nodes from real network)

- Parallel network is consistent and “looks OK”
e Attacker can track nodes

- Bootstrap from a trusted source: Hard to get in dynamic networks, public keys
might help

- Cross check routing tables with random queries
» Assumes we were part of network earlier, still not totally safe

Uni Innsbruck Informatik - 8

Storage and Retrieval Attacks

Attacker can deny existence of data
- Or return wrong data

Must implement replication at storage layer
- Who creates replicas?
- Clients must be able to verify that all copies were created

Avoid single points of responsibility
- Replication with multiple hash functions is one good way

Big problem if system does not verify IDs
- Any node can become responsible for any data
- For example, Chord allows virtual nodes

Uni Innsbruck Informatik - 9

Miscellaneous Attacks

« Attacker can behave inconsistently
- Some nodes see it as good, others as bad
- Maintain good face to nearby nodes
- How would a distant node convince neighbors of bad node?
« Public keys and signatures could solve this

« Denial of service
- Attacker floods a node with messages
- Node appears failed to the rest of the network
- Replication helps, but attacker may succeed if replication not sufficient
- Replicas should be in physically different locations
« DHT assigns keys to nodes randomly, should be OK
» Large attacks require lot of resources

Uni Innsbruck Informatik - 10

More Miscellaneous Attacks

» Attacker can join and leave the network rapidly
Causes lot of stabilization traffic in network
Loss of performance, maybe loss of correctness
Works well if stabilization requires lot of data transfer
» For example, copying of large objects from node to node
DHT must handle this case anyway

» Attacker can send unsolicited messages
Q asks E and gets referred to A

E knows Q expects an answer from A

E forges message from A to Q

Public keys and signatures (heavy solution)
Random nonce in a message works also

Uni Innsbruck Informatik - 11

Design Principles

Summary of design principles for secure DHT:

1. Define verifiable system invariants (and verify them!)
2. Allow querying node to observe lookup process

3. Assign keys to nodes in a verifiable way

4. Server selection in routing may be abused

5. Cross-check routing tables with random queries

6. Avoid single points of responsibility

Uni Innsbruck Informatik - 12

Sybil Attack

e Entity: Real-world entity; Identity: Representation in the system

e Redundancy requires resources to be spread across several entities
- Peer-to-peer systems work only with identities

« Sybil Attack: one entity creates multiple identities to attack the system

- From book/movie telling the story of Sybil Isabel Dorsett who suffered from
multiple personality disorder

« For example, data replication
- A single copy might be on a malicious peer
- But several copies on different peers are safe, right?

« How can we know that the “different” peers are really different and
distinct physical entities?

« Answer: We need a (logically) centralized, trusted entity (e.g., CA)
- Without central authority, problem was proven to be unsolvable

Uni Innsbruck Informatik - 13

Examples of Solutions

e Real centralized authorities:
- Certification Authorities, e.g., VeriSign

» Logically centralized authorities:

Hashing IP address to get DHT identifier (e.g., CFS)
Add host identifiers to DNS names (SFS)
Cryptographic keys in hardware (EMBASSY)

These appear distributed, but they all rely on some centralized authority
(e.g., ICANN gives out IP addresses and DNS names)

 ldentities vouching for other identities
- For example, PGP web of trust for humans
- NOT a solution!

- Attacker can attack the system early and compromise generation of
identities and break chain of vouchers

Uni Innsbruck Informatik - 14

Results

e Entity should accept identities only if they have been validated by
central authority, itself, or others

- In a fully distributed system, only entity itself and others

« The following can be shown under reasonably realistic assumptions
for direct validation:

1. Even when severely resource constrained, a faulty entity can
counterfeit a constant number of multiple identities

2. Each correct entity must simultaneously validate all the identities it is
presented; otherwise, a faulty entity can counterfeit an unbounded
number of entities

* Similar results hold for indirect validation by others

e What resources can be used in identification?
- Communication, CPU, storage

Uni Innsbruck Informatik - 15

Resources as Proof

e Communication

- Broadcast request for others to identify themselves and accept only
responses which come within a certain time interval

- Model had assumed broadcast communications

« CPU

- Require other peer to perform some computationally intensive, but easily
verifiable, task

- This requires simultaneous identification (point 2 from above)

« Storage

- Have others store some uncompressible data and periodically ask them to
give back a small piece

- Would eventually catch a Sybil attack
- Problem: No storage space left for doing any real work...

Uni Innsbruck Informatik - 16

Implications of Sybil Attack

« Need centralized authority for managing identities

« Logically centralized systems should be aware of their potential
(future) vulnerabilities

- For example, privacy extensions for IPvé might break CFS

« Sybil attack can be avoided under the assumptions:
- All entities operate under identical resource constraints

- All presented identities are validated simultaneously by all entities,
coordinated over the whole system

- For indirect validation, the number of vouchers must exceed the number
of failures in system

» Are these assumptions feasible or practical for a large-scale
distributed system?

- Answer would seem to be no

Uni Innsbruck Informatik - 17

Byzantine Generals Problem

e Several divisions of the Byzantine army surround an enemy city. Each
division is commanded by a general.

e The generals communicate only through messenger

- Need to arrive at a common plan after observing the enemy
« Some of the generals may be traitors

- Traitors can send false messages
e Required: An algorithm to guarantee that

1. Al loyal generals decide upon the same plan of action, irrespective of what the
traitors do.

2. A small number of traitors cannot cause the loyal generals to adopt a bad plan.

Theorem: (from L. Lamport)

e If no more than m generals out of n = 3m + 1 are traitors, everybody will
follow the orders

Solution:

« Digital signatures; all generals sign their orders, inconsistent orders or
forwarding of false messages can immediately be detected

Uni Innsbruck Informatik - 18

Reliability / performance issues with DHTs

DHTSs trade-offs: performance vs. cost, reliability vs. cost
- Cost: node state or number of bytes sent into network
- Reliability / performance often connected
» Performance = lookup latency = f(number of hops)
« Assume random failures: long path = unreliable system

« It was shown that we can configure a DHT to give us “decent” performance
(lookup latency) at “reasonable” cost (overlay maintenance overhead)

e Question: Is “decent” good enough for real applications?

» In other words, how does a DHT-based P2P application compare against a
client/server-application?

o Let’s take Domain Name System (DNS) as example
- Fundamental Internet-service
- Very much a client/server application

Uni Innsbruck Informatik - 19

P2P DNS

Domain Name System (DNS) very much client-server
Ownership of domain = responsibility to serve its data

DNS concentrates traffic on root servers
- Up to 18% of DNS traffic goes to root servers

A lot of traffic also due to misconfigurations

P2P DNS
- puts expertise in the system
» No need to be an expert administrator
- shares load more equally

So why not replace standard DNS with P2P DNS?

Uni Innsbruck Informatik - 20

DNS: Overview

DNS organized in zones (= domain)
- Actual data in resource records (RR)
- Several types of RRs: A, PTR, NS, MX, CNAME, ...

Administrator of zone responsible for setting up a server for that
zone (+ redundant servers at other domains)

Queries resolved hierarchically, starting from root
Owner of a zone is responsible for serving zone’s data

DNS shortcomings:
- Need skill to configure name server
- No security (but added later to some degree)
- Queries can take very long in worst case

Uni Innsbruck Informatik - 21

DNS: Example

a.root-servers.net

.,
.....
.,
.,

ns.something.com

NS com. .
ns.something.com

NS foo.co ns.foo.com

ns.foo.com

\ A www.foo.com. AE&

Client = =
192.168.125.54

« Client wants to resolve www.foo.com
« Replies to queries have additional information (IP address + name)
e Queries can be iterative (here) or recursive

Uni Innsbruck Informatik - 22

How to Do P2P DNS?

Put DNS resource records in a DHT

Key is hash of domain name and query type
- For example, SHAT(www.foo.com, A)

Values replicated for better performance (~ 5-7 copies)

Can be built on any DHT, works the same way

All resource records must be signed
- Some overhead for key retrieval

For migration, put P2P DNS server on local machine
- Configure normal DNS to go through P2P DNS
- No difference to applications

Uni Innsbruck Informatik - 23

P2P DNS: Performance

Current DNS has median latency of 43 ms
- Measured at MIT

Some queries can take a long time
- Up to 1 minute (due to default timeouts)

P2P DNS has median latency of 350 ms!
- Simulated on top of Chord

Conclusion:
P2P DNS is much, much worse than standard DNS

- But extremely long queries cannot happen

Uni Innsbruck Informatik - 24

Why (not) P2P DNS?

Pros Cons
« Simpler administration « All queries must be anticipated in
- Most problems in current DNS are advance
misconfigurations - With current DNS, a local database
- DNS servers not easy to configure well could be queried as a request arrives
« P2P DNS robust against lost network « Current DNS can tailor requests to
connectivity client
- Current DNS: first DNS server - Widely used in content distribution
unavailable = all lookups fail networks and load balancing
» No risk of incorrect delegation e Might be possible to implement
- Subdomains can be easily established above in client software

- Signatures confirm
o But latency problem remains!

Uni Innsbruck Informatik - 25

Future of DHT-Based Applications?

DHT-based applications have to make several RPCs
- 1 million node Chord = 20 RPCs, Tapestry 5 RPCs

Experiments with DNS show even 5 is too much
- Current DNS usually needs 2 RPCs
- DNS puts a lot of knowledge at the top of the hierarchy
» Root servers know about millions of domains

Many RPCs is main weakness of DHTs

DHT-based applications have all their features on clients
- New feature = install new clients
- Some kind of an “active” network as a solution?

Uni Innsbruck Informatik - 26

Reliability of P2P Storage

« Example case: P2P storage system
- Each object replicated in some peers
- Peers can find where objects should be
« Typically DHT-based, but DHT is not absolutely required

e No concern of consistency
- Read-only storage system

Questions:

1. How many copies are needed for a given level of reliability?
- Unconstrained system with infinite resources

2. What is the optimal number of copies?
- System with storage constraints

Uni Innsbruck Informatik - 27

Reliability of Data in DHT-Storage

« Storage system using a distributed hash table (DHT)

e Peer A wants to store object O
- Create k copies on different peers
- k peers determined by DHT for each object (k closest)

e Later peer B wants to read O
- What can go wrong?

« Simple storage system: Object created once, read many times, no
modifications to object

e Question: What is the value of k needed to achieve e.g., 99.9%
availability of O?
- Remember: Only probabilistic guarantees possible!

Uni Innsbruck Informatik - 28

Assumptions

Assume | peers in the DHT
- Each peer has unlimited storage capacity

» Peer is up with probability p
- Peers are homogeneous, i.e., all peers have same up-probability

e Peers uniformly distributed in hash space
- Makes mathematical analysis tractable

» New peers can join the network
» Peers never permanently leave

» User may need to access several objects to complete one user-level action
- For example, resolve path to file

Uni Innsbruck Informatik - 29

What Can Go Wrong?

1. All k peers are down when B reads
« Object is not available in any on-line peer

2. k closest peers were down when A wrote and are up when B reads

3. At least k peers join and become new closest peers

« In above two cases, object is (maybe) still available in the peers where A
wrote it

4. All k peers have permanently left the network
» Assumed not to happen

e We only look at the first three cases

« What are the probabilities of each one of them?

Uni Innsbruck Informatik - 30

Probabilities of Loss

1. All k peers are down when B reads pu=(1- p)k

2. k closest peers were down when A wrote and are up when B reads

(@((L-p)I) p-p))
pmzZ[i](uj

i=k

3. N peers join and at least k peers become new closest peers

(M)

ick \ |

Uni Innsbruck Informatik - 31

Numerical Values for Loss

pi, ~= (for given I and p)

0 110 10 "2

0=

» First case clearly dominates
- In above tables, k =5
- Cases 2 and 3 may look good at first sight, but note:
Often necessary to search more than k nodes to find object!

Uni Innsbruck Informatik - 32

How to Improve?

e Maintain storage invariant > O always at k closest
- Needs additional coordination
- Possible if down-events controlled
- Crash - others need to detect crash (before they crash)
- Guarantees availability as long as invariant maintained

- Possibly wastes storage if copies are not removed when peers come
back into the system

- This approach taken by PAST storage system

e Increase k
- Create more copies, simple to implement
- Wastes storage capacity?
- Not good for changing objects (consistency)

Uni Innsbruck Informatik - 33

What does the user see?

e Suppose: User’s action needs to access several objects
- For example, resolve path for files one level at a time
« For each object: p,=1-p,;=1-(1-p)«

« What if we need to access 2 objects?

 Success for user: p; = (1 - (1 - p)¥)?

e Solving for k:
o _ log(1=+/pr)
log(1-p)

« In general for n objects: p, = (1 - (1 - p)¥)"

Uni Innsbruck Informatik - 34

How Large Should k Be?

200

...... b, = 99%
180 -= P =99.9%
— P, =99.99% .
1601 __ p-99999% || * Define target p,
140l i - This is what user sees
120l Zoom l - Failures temporary

» When peers mostly up,
k small

®
o

Number of copies needed, r
)
o

e Increase in p, =2
small increase in k

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Individual peer up probability, p

Uni Innsbruck Informatik - 35

Replication: how to do it?

e Replication in read-only system helps availability

e Main cause of unavailability is k peers being down at the same time
when trying to read

» Create k copies of each object
- If peers mostly up, k quite small (< 10)
- Actively maintaining copies in right peers helps

 Where to place objects?

« Key assumption of DHTs: load evenly distributed across address space
- Then storing replicas in local neighbors will preserve this property

Uni Innsbruck Informatik - 36

Two replication strategies for Chord

1. Successor list
e Chord maintains 1 successor pointer, 1 predecessor pointer, finger table
» Idea for storing replicas in (overlay) proximity:

e Maintain pointers to next S successors
(N*(S-1)) additional pointers in the whole system)

« Store replica in all these nodes
e Maintenance: copy / move replica as nodes come and go (or fail)

2. Multiple nodes in one interval
e Assign interval responsibility to more than one node
» Each node stores additional pointers to neighbors in the same interval
« But only one finger pointer
« Joining node announces itself to nodes responsible for the same interval

Uni Innsbruck Informatik - 37

Shortcomings of proximity based methods

Proximity based replica storage assumes that objects evenly distributed across
address space

- Not always true

» Prior analysis assumes all objects equally popular or important
- Not always true
- LZipf-distribution for object popularities
- Also, some objects may require higher availability

« How should objects be replicated in this case?

e Algorithms based on notion of well connected P2P community (e.g. campus)
- Replacement policies such as Most Frequently Requested (MFR)

- Each object o has “attractor nodes”; Object o tends to get replicated in its attractor
nodes; Queries for o tend to be sent to attractor nodes = tend to get hits

Uni Innsbruck Informatik - 38

Redundancy

« No need to always replicate full objects
- What if parts of objects are distributed?
- We can go beyond simple splitting...

e Erasure codes
- Split each object into N fragments
- Compute K redundant fragments
- Disseminate these N+K blocks
- Any N out of these N+K blocks suffice for reconstructing the object

e Most efficient and common method: network coding
- Based on linear combinations of orthogonal vectors in finite fields
- But easier to explain with XOR :-)
- Network coding applied for numerous things nowadays (e.g. mobile nets)

Uni Innsbruck Informatik - 39
Network coding

R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W.

Yeung, "Network Information Flow", (IEEE A
Transactions on Information Theory, IT-46,
pp. 1204-1216, 2000) B

Example:
» Bits A and B should be transmitted A

A#+B

* Only one bit can be sent on each link

— Simply send the bits: left side gets A,
right side gets B, one of them can get the
other in addition via middle link B

— By sending A XOR B, both sides can get
A and B in one step

Uni Innsbruck Informatik - 40

Practical Network Coding

« Avalanche (Gkantsidis, Rodriguez, 2005)

Packet 1
« Goal -
- Avoid Coupon-Collector-Problem when getting
blocks of an object
 Calculation of how often to buy in order to
get all 10 different coupons

» Problem does not need to arise with network
coding: an object consisting of m parts can be
reconstructed from any m parts

 This is closer to most coupons in real life...

- Optimal dissemination of data regarding available
bandwidth

Node A Node B

e Method

- Disseminate linear combinations of object parts

- Receiver collects everything, then reconstructs
or-i ginal ObJ eCt Coefficient vector: (¢”, c,+c",¢';, ¢y C,+C",C', ...)

Uni Innsbruck Informatik - 41

Pro‘s and con‘s of network coding

« Major performance and reliability gains claimed for a multitude of things
« But: significant overhead

« Storage overhead

- E.g. 4 GB file with 100 KB block must contain variable vector of
4 GB/100 KB = 40 KB = 40% overhead per block

- Better: 4 GByte and 1 MByte-Block; resulting overhead per block 4 KB = 0,4%

e Decoding: memory and CPU

- Inverting a m x m-matrix (m = size of variable vector)
- this needs time O(m3) and memory O(m?)

o Read-/write-access to files

- Encoding / decoding: for m blocks, must traverse whole file m times
- Disk cache cannot be exploited because no data locality

Uni Innsbruck Informatik - 42

Conclusion

e Security and reliability are major issues in P2P systems
- They are related

« Reliability is also related to performance
- Avoid long paths: more reliable, shorter lookup latency
- Network coding: can improve reliability and performance

« A lot of unresolved issues and open questions
- How to efficiently cope with Sybil attacks
» E.g. reputation management systems
- How to ideally replicate (depending on distribution of popularity items)
- Trade-off between redundancy and replication
 Will network coding prevail?

Uni Innsbruck Informatik - 43

References / acknowledgments

o Slides from:
- Jussi Kangasharju
- Christian Schindelhauer
- Klaus Wehrle

