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OutlineOutline

• This block addresses the question:
What if something goes wrong?

• What can go wrong?
– Attackers can infiltrate the system
– Nodes can fail

• Why would nodes fail?
– Technical reasons (e.g. link outage)
– Denial-of-Service attacks
– Censorship

• Reliability / resilience and security are related issues
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Security in Security in DHTsDHTs

• DHT architectures assumes a trusted system
– True in corporate environments, but not on the Internet

• One solution: Central certificate-granting authority
– Used by Pastry and its related projects
– Constrains membership in DHT

• One attack: Return incorrect data
– Easy to avoid through cryptographic techniques
– Detect and ignore non-authentic data

• Focus: Attacks that prevent participants from finding the data
– Threatens the liveliness of the system
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DHT Components and adversary modelDHT Components and adversary model

DHTs have the following components:
1. Key identifier space
2. Node identifier space
3. Rules for associating keys to nodes
4. Per-node routing tables that refer to other nodes
5. Rules for updating routing tables as nodes join and leave

• Any of the above may be the target of the attack from an adversary
• Adversaries are participants in DHT that do not follow protocol correctly

Adeversary model - assumptions:
• Malicious node can generate arbitrary packets

– Includes forged source IP address
• Can receive only packets addressed to itself

– Not able to overhear communications between other nodes
• Malicious nodes can conspire together, but still limited as above



Uni Innsbruck Informatik Uni Innsbruck Informatik -- 55

Types of AttacksTypes of Attacks

1. Routing attacks
2. Attack against data storage
3. Miscellaneous attacks

• First goal: Detect attack
– Violation of invariants or contracts

• What to do when an attack is detected?
– Is other node malicious?
– Did other node simply not detect attack?

• Achieving verifiability is vital
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Routing AttacksRouting Attacks

• Routing is responsible for maintaining routing tables and sending 
messages to correct nodes
– Routing must function correctly
– Define invariants and check them

• Attacker can incorrectly forward messages
– But: Each hop should get “closer” to destination
– Querying node should check this
– Allow querying node to observe lookup process

• For example, processing messages recursively hides this

• Attacker can claim that wrong node is responsible node
– Querying node is “far away”, cannot verify this
– Assign keys to nodes in a verifiable way
– Often: Assign node IDs in a verifiable way (e.g., IP address)

• For example, CAN lets node pick its own ID…
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More Routing AttacksMore Routing Attacks

• Attacker can send incorrect routing updates
– Blatantly wrong updates can be detected
– If DHT allows several choices for next hop

• Attacker can pick a “bad” node
• Not necessarily a problem with correctness, only performance
• Can be a problem for some applications (anonymity)

– Server selection can be abused

• Attacker can partition network
– If new node contacts attacker first, attacker can partition network (can even 

hijack nodes from real network)
– Parallel network is consistent and “looks OK”

• Attacker can track nodes
– Bootstrap from a trusted source: Hard to get in dynamic networks, public keys 

might help
– Cross check routing tables with random queries

• Assumes we were part of network earlier, still not totally safe
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Storage and Retrieval AttacksStorage and Retrieval Attacks

• Attacker can deny existence of data
– Or return wrong data

• Must implement replication at storage layer
– Who creates replicas?
– Clients must be able to verify that all copies were created

• Avoid single points of responsibility
– Replication with multiple hash functions is one good way

• Big problem if system does not verify IDs
– Any node can become responsible for any data
– For example, Chord allows virtual nodes
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Miscellaneous AttacksMiscellaneous Attacks

• Attacker can behave inconsistently
– Some nodes see it as good, others as bad
– Maintain good face to nearby nodes
– How would a distant node convince neighbors of bad node?

• Public keys and signatures could solve this

• Denial of service
– Attacker floods a node with messages
– Node appears failed to the rest of the network
– Replication helps, but attacker may succeed if replication not sufficient
– Replicas should be in physically different locations

• DHT assigns keys to nodes randomly, should be OK
• Large attacks require lot of resources
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More Miscellaneous AttacksMore Miscellaneous Attacks

• Attacker can join and leave the network rapidly
– Causes lot of stabilization traffic in network
– Loss of performance, maybe loss of correctness
– Works well if stabilization requires lot of data transfer

• For example, copying of large objects from node to node
– DHT must handle this case anyway

• Attacker can send unsolicited messages
– Q asks E and gets referred to A
– E knows Q expects an answer from A
– E forges message from A to Q
– Public keys and signatures (heavy solution)
– Random nonce in a message works also
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Design PrinciplesDesign Principles

Summary of design principles for secure DHT:

1. Define verifiable system invariants (and verify them!)

2. Allow querying node to observe lookup process

3. Assign keys to nodes in a verifiable way

4. Server selection in routing may be abused

5. Cross-check routing tables with random queries

6. Avoid single points of responsibility
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Sybil AttackSybil Attack

• Entity: Real-world entity; Identity: Representation in the system

• Redundancy requires resources to be spread across several entities 
– Peer-to-peer systems work only with identities

• Sybil Attack: one entity creates multiple identities to attack the system
– From book/movie telling the story of Sybil Isabel Dorsett who suffered from 

multiple personality disorder

• For example, data replication
– A single copy might be on a malicious peer
– But several copies on different peers are safe, right?

• How can we know that the “different” peers are really different and 
distinct physical entities?

• Answer: We need a (logically) centralized, trusted entity (e.g., CA)
– Without central authority, problem was proven to be unsolvable
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Examples of SolutionsExamples of Solutions

• Real centralized authorities:
– Certification Authorities, e.g., VeriSign

• Logically centralized authorities:
– Hashing IP address to get DHT identifier (e.g., CFS)
– Add host identifiers to DNS names (SFS)
– Cryptographic keys in hardware (EMBASSY)
– These appear distributed, but they all rely on some centralized authority 

(e.g., ICANN gives out IP addresses and DNS names)

• Identities vouching for other identities
– For example, PGP web of trust for humans
– NOT a solution!
– Attacker can attack the system early and compromise generation of 

identities and break chain of vouchers
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ResultsResults

• Entity should accept identities only if they have been validated by 
central authority, itself, or others
– In a fully distributed system, only entity itself and others

• The following can be shown under reasonably realistic assumptions 
for direct validation:
1. Even when severely resource constrained, a faulty entity can 

counterfeit a constant number of multiple identities
2. Each correct entity must simultaneously validate all the identities it is 

presented; otherwise, a faulty entity can counterfeit an unbounded 
number of entities

• Similar results hold for indirect validation by others

• What resources can be used in identification?
– Communication, CPU, storage
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Resources as ProofResources as Proof

• Communication
– Broadcast request for others to identify themselves and accept only 

responses which come within a certain time interval
– Model had assumed broadcast communications

• CPU
– Require other peer to perform some computationally intensive, but easily 

verifiable, task
– This requires simultaneous identification (point 2 from above)

• Storage
– Have others store some uncompressible data and periodically ask them to 

give back a small piece
– Would eventually catch a Sybil attack
– Problem: No storage space left for doing any real work…
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Implications of Sybil AttackImplications of Sybil Attack

• Need centralized authority for managing identities

• Logically centralized systems should be aware of their potential
(future) vulnerabilities
– For example, privacy extensions for IPv6 might break CFS

• Sybil attack can be avoided under the assumptions:
– All entities operate under identical resource constraints
– All presented identities are validated simultaneously by all entities, 

coordinated over the whole system
– For indirect validation, the number of vouchers must exceed the number 

of failures in system

• Are these assumptions feasible or practical for a large-scale 
distributed system?
– Answer would seem to be no
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Byzantine Generals ProblemByzantine Generals Problem

• Several divisions of the Byzantine army surround an enemy city. Each 
division is commanded by a general.

• The generals communicate only through messenger
– Need to arrive at a common plan after observing the enemy

• Some of the generals may be traitors
– Traitors can send false messages

• Required: An algorithm to guarantee that
1. All loyal generals decide upon the same plan of action, irrespective of what the 

traitors do.
2. A small number of traitors cannot cause the loyal generals to adopt a bad plan.

Theorem: (from L. Lamport)
• If no more than m generals out of n = 3m + 1 are traitors, everybody will 

follow the orders

Solution:
• Digital signatures; all generals sign their orders, inconsistent orders or 

forwarding of false messages can immediately be detected
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Reliability / performance issues with Reliability / performance issues with DHTsDHTs

• DHTs trade-offs: performance vs. cost, reliability vs. cost
– Cost: node state or number of bytes sent into network
– Reliability / performance often connected

• Performance = lookup latency = f(number of hops)
• Assume random failures: long path = unreliable system

• It was shown that we can configure a DHT to give us “decent” performance 
(lookup latency) at “reasonable” cost (overlay maintenance overhead)

• Question: Is “decent” good enough for real applications?
• In other words, how does a DHT-based P2P application compare against a 

client/server-application?

• Let’s take Domain Name System (DNS) as example
– Fundamental Internet-service
– Very much a client/server application
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P2P DNSP2P DNS

• Domain Name System (DNS) very much client-server

• Ownership of domain = responsibility to serve its data

• DNS concentrates traffic on root servers
– Up to 18% of DNS traffic goes to root servers

• A lot of traffic also due to misconfigurations

• P2P DNS
– puts expertise in the system

• No need to be an expert administrator
– shares load more equally

• So why not replace standard DNS with P2P DNS?
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DNS: OverviewDNS: Overview

• DNS organized in zones (≈ domain)
– Actual data in resource records (RR)
– Several types of RRs: A, PTR, NS, MX, CNAME, …

• Administrator of zone responsible for setting up a server for that 
zone (+ redundant servers at other domains)

• Queries resolved hierarchically, starting from root

• Owner of a zone is responsible for serving zone’s data

• DNS shortcomings:
– Need skill to configure name server
– No security (but added later to some degree)
– Queries can take very long in worst case
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DNS: ExampleDNS: Example

• Client wants to resolve www.foo.com
• Replies to queries have additional information (IP address + name)
• Queries can be iterative (here) or recursive

Client

a.root-servers.net

ns.something.com

ns.foo.com

NS com.
ns.something.com

NS foo.com. ns.foo.com

A www.foo.com.

192.168.125.54
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How to Do P2P DNS?How to Do P2P DNS?

• Put DNS resource records in a DHT

• Key is hash of domain name and query type
– For example, SHA1(www.foo.com, A)

• Values replicated for better performance (~ 5-7 copies)

• Can be built on any DHT, works the same way

• All resource records must be signed
– Some overhead for key retrieval

• For migration, put P2P DNS server on local machine
– Configure normal DNS to go through P2P DNS
– No difference to applications
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P2P DNS: PerformanceP2P DNS: Performance

• Current DNS has median latency of 43 ms
– Measured at MIT

• Some queries can take a long time
– Up to 1 minute (due to default timeouts)

• P2P DNS has median latency of 350 ms!
– Simulated on top of Chord

• Conclusion:
P2P DNS is much, much worse than standard DNS
– But extremely long queries cannot happen
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Why (not) P2P DNS?Why (not) P2P DNS?

Pros
• Simpler administration

– Most problems in current DNS are 
misconfigurations

– DNS servers not easy to configure well

• P2P DNS robust against lost network 
connectivity
– Current DNS: first DNS server 

unavailable ⇒ all lookups fail

• No risk of incorrect delegation
– Subdomains can be easily established
– Signatures confirm

Cons
• All queries must be anticipated in 

advance
– With current DNS, a local database 

could be queried as a request arrives

• Current DNS can tailor requests to 
client
– Widely used in content distribution 

networks and load balancing

• Might be possible to implement 
above in client software

• But latency problem remains!
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Future of DHTFuture of DHT--Based Applications?Based Applications?

• DHT-based applications have to make several RPCs
– 1 million node Chord = 20 RPCs, Tapestry 5 RPCs

• Experiments with DNS show even 5 is too much
– Current DNS usually needs 2 RPCs
– DNS puts a lot of knowledge at the top of the hierarchy

• Root servers know about millions of domains

• Many RPCs is main weakness of DHTs

• DHT-based applications have all their features on clients
– New feature ⇒ install new clients
– Some kind of an “active” network as a solution?
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Reliability of P2P StorageReliability of P2P Storage

• Example case: P2P storage system
– Each object replicated in some peers
– Peers can find where objects should be

• Typically DHT-based, but DHT is not absolutely required

• No concern of consistency
– Read-only storage system

Questions:

1. How many copies are needed for a given level of reliability?
– Unconstrained system with infinite resources

2. What is the optimal number of copies?
– System with storage constraints
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Reliability of Data in DHTReliability of Data in DHT--StorageStorage

• Storage system using a distributed hash table (DHT)

• Peer A wants to store object O
– Create k copies on different peers
– k peers determined by DHT for each object (k closest) 

• Later peer B wants to read O
– What can go wrong?

• Simple storage system: Object created once, read many times, no 
modifications to object

• Question: What is the value of k needed to achieve e.g., 99.9% 
availability of O?
– Remember: Only probabilistic guarantees possible!
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AssumptionsAssumptions

• Assume I peers in the DHT
– Each peer has unlimited storage capacity

• Peer is up with probability p
– Peers are homogeneous, i.e., all peers have same up-probability

• Peers uniformly distributed in hash space
– Makes mathematical analysis tractable

• New peers can join the network

• Peers never permanently leave

• User may need to access several objects to complete one user-level action
– For example, resolve path to file
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What Can Go Wrong?What Can Go Wrong?

1. All k peers are down when B reads
• Object is not available in any on-line peer

2. k closest peers were down when A wrote and are up when B reads

3. At least k peers join and become new closest peers
• In above two cases, object is (maybe) still available in the peers where A

wrote it

4. All k peers have permanently left the network
• Assumed not to happen

• We only look at the first three cases

• What are the probabilities of each one of them?
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Probabilities of LossProbabilities of Loss

1. All k peers are down when B reads

2. k closest peers were down when A wrote and are up when B reads

3. N peers join and at least k peers become new closest peers

i

N

ki
l

Ii
N

p 1
3 ∑

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∑
−

=
⎟
⎠
⎞

⎜
⎝
⎛ −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
≈

Ip

ki

i

l
I

pp
i

Ip
p

)1(

2
)1()1(

k
l pp )1(1 −=



Uni Innsbruck Informatik Uni Innsbruck Informatik -- 3131

Numerical Values for LossNumerical Values for Loss

• First case clearly dominates
– In above tables, k = 5
– Cases 2 and 3 may look good at first sight, but note:

Often necessary to search more than k nodes to find object!
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How to Improve?How to Improve?

• Maintain storage invariant O always at k closest
– Needs additional coordination
– Possible if down-events controlled
– Crash others need to detect crash (before they crash)
– Guarantees availability as long as invariant maintained
– Possibly wastes storage if copies are not removed when peers come 

back into the system
– This approach taken by PAST storage system

• Increase k
– Create more copies, simple to implement
– Wastes storage capacity?
– Not good for changing objects (consistency)
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What does the user see?What does the user see?

• Suppose: User’s action needs to access several objects
– For example, resolve path for files one level at a time

• For each object: ps = 1 – pl1 = 1 – (1 – p)k

• What if we need to access 2 objects?

• Success for user: pt = (1 – (1 – p)k)2

• Solving for k:

• In general for n objects: pt = (1 – (1 – p)k)n

    
k =

log(1− pt )

log(1− p)
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How Large Should How Large Should kk Be?Be?

• Define target pt

– This is what user sees
– Failures temporary

• When peers mostly up,
k small

• Increase in pt
small increase in k
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Replication: how to do it?Replication: how to do it?

• Replication in read-only system helps availability

• Main cause of unavailability is k peers being down at the same time 
when trying to read

• Create k copies of each object
– If peers mostly up, k quite small ( < 10)
– Actively maintaining copies in right peers helps

• Where to place objects?

• Key assumption of DHTs: load evenly distributed across address space
– Then storing replicas in local neighbors will preserve this property
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TwoTwo replicationreplication strategiesstrategies forfor ChordChord

1. Successor list
• Chord maintains 1 successor pointer, 1 predecessor pointer, finger table
• Idea for storing replicas in (overlay) proximity:

• Maintain pointers to next S successors
( N*(S-1)) additional pointers in the whole system )

• Store replica in all these nodes
• Maintenance: copy / move replica as nodes come and go (or fail)

2. Multiple nodes in one interval
• Assign interval responsibility to more than one node
• Each node stores additional pointers to neighbors in the same interval

• But only one finger pointer
• Joining node announces itself to nodes responsible for the same interval
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ShortcomingsShortcomings of of proximityproximity basedbased methodsmethods

• Proximity based replica storage assumes that objects evenly distributed across 
address space
– Not always true

• Prior analysis assumes all objects equally popular or important
– Not always true
– Zipf-distribution for object popularities
– Also, some objects may require higher availability

• How should objects be replicated in this case?

• Algorithms based on notion of well connected P2P community (e.g. campus)
– Replacement policies such as Most Frequently Requested (MFR)
– Each object o has “attractor nodes”; Object o tends to get replicated in its attractor 

nodes;  Queries for o tend to be sent to attractor nodes ⇒ tend to get hits
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RedundancyRedundancy

• No need to always replicate full objects
– What if parts of objects are distributed?
– We can go beyond simple splitting…

• Erasure codes
– Split each object into N fragments
– Compute K redundant fragments
– Disseminate these N+K blocks
– Any N out of these N+K blocks suffice for reconstructing the object

• Most efficient and common method: network coding
– Based on linear combinations of orthogonal vectors in finite fields
– But easier to explain with XOR :-)
– Network coding applied for numerous things nowadays (e.g. mobile nets)
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Network codingNetwork coding

R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W.
Yeung, "Network Information Flow", (IEEE
Transactions on Information Theory, IT-46,
pp. 1204-1216, 2000)

Example:
• Bits A and B should be transmitted
• Only one bit can be sent on each link

– Simply send the bits: left side gets A, 
right side gets B, one of them can get the 
other in addition via middle link

– By sending A XOR B, both sides can get 
A and B in one step
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PracticalPractical NetworkNetwork CodingCoding

• Avalanche (Gkantsidis, Rodriguez, 2005)

• Goal
– Avoid Coupon-Collector-Problem when getting

blocks of an object
• Calculation of how often to buy in order to 

get all 10 different coupons
• Problem does not need to arise with network

coding: an object consisting of m parts can be
reconstructed from any m parts

• This is closer to most coupons in real life…
– Optimal dissemination of data regarding available

bandwidth

• Method
– Disseminate linear combinations of object parts
– Receiver collects everything, then reconstructs

original object
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ProPro‘‘ss and and concon‘‘ss of of networknetwork codingcoding

• Major performance and reliability gains claimed for a multitude of things

• But: significant overhead

• Storage overhead
– E.g. 4 GB file with 100 KB block must contain variable vector of

4 GB/100 KB = 40 KB = 40% overhead per block
– Better: 4 GByte and 1 MByte-Block; resulting overhead per block 4 KB = 0,4%

• Decoding: memory and CPU
– Inverting a m x m-matrix (m = size of variable vector)
– this needs time O(m3) and memory O(m2)

• Read-/write-access to files
– Encoding / decoding: for m blocks, must traverse whole file m times
– Disk cache cannot be exploited because no data locality
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ConclusionConclusion

• Security and reliability are major issues in P2P systems
– They are related

• Reliability is also related to performance
– Avoid long paths: more reliable, shorter lookup latency
– Network coding: can improve reliability and performance

• A lot of unresolved issues and open questions
– How to efficiently cope with Sybil attacks

• E.g. reputation management systems
– How to ideally replicate (depending on distribution of popularity items)
– Trade-off between redundancy and replication

• Will network coding prevail?
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