Uni Innsbruck Informatik - 1

Peer-to-Peer Systems

DHT examples, part 3
(Symphony, Viceroy, Distance Halving, Koorde)

Michael Welzl michael.welzl@uibk.ac.at

DPS NSG Team http://dps.uibk.ac.at/nsg
Institute of Computer Science
University of Innsbruck, Austria

Uni Innsbruck Informatik - 3

Symphony /2

Nodes arranged in a unit circle (perimeter = 1)

Arrival = Node chooses position along circle
uniformly at random

Each node has 1 short link (next node on circle)
and k long links

Adaptation of Small World Idea: [Kleinberg00]
Long links ¢ rotribul

function(p(x) = 1/x log n where

nodes.

n?

sSimple greedy routing:
“Forward along that link that minimizes
the absolute distance to the destination.”

Average lookup latency = O((log2) / k) hops

Fault Tolerance:
No backups for long links! Only short links
are fortified for fault tolerance.

Mnode <«—— longlink «—— short link

A typical Symphony network

Uni Innsbruck Informatik - 5

Viceroy

+ i bULterfly rmams co soute >

« Butterfly = well known network topology with some desirable properties
- Small degree (4) and small (proven to be close to optimal) diameter
- Logarithmic path length between any two nodes
- Simple routing, no bottlenecks, high resilience

Ideal case in Viceroy

Uni Innsbruck Informatik - 2
Symphony

Key idea: Distributed Hashing in a Small World

- Start with Chord, but discard the strong requirements on the routing table (finger
table); rely on small world (random links) to reach the destination

Construction
- Map the nodes and keys to the ring
- Link every node with its successor and predecessor
- Add k random links with probability
proportional to 1/(d-log N),
where d is the distance on the ring

l‘-\

- Lookup time O(log? N)
- If k = log N lookup time O(log N)

Easy to insert and remove nodes
(perform periodical refreshes for the links)

N

« O(log? N) expected messages

Uni Innsbruck Informatik - 4

Symphony /3

« Key problem: network size estimation

« Symphony optimizations:

- Based on family of harmonic functions (as PDF), hence the name

x = Length of arc
1/x = Estimate of n
p(x)=1/(x log n)
- Bi-directional Routing

« Exploit both outgoing and incoming links!
+ Route to the neighbor that minimizes absolute distance to destination
« Reduces avg latency by 25-30%
- 1-Lookahead
« List of neighbor’s neighbors; reduces avg. latency by 40%

Uni Innsbruck Informatik - 6

Routing in a butterfly network

000 001 010 011 100 101 110 111
% § level 1
< § level 2

level 3

o leveld

« That's a bit complicated and inefficient

« Hence, in Viceroy, nodes are also connected within each level

Uni Innsbruck Informatik - 7

Viceroy network

« Arrange nodes and keys on a ring
- like in Chord

« Assign to each node a level value
- chosen uniformly from the
set {1,...,log n}
- estimate n by taking the inverse
of the distance of the node
with its successor

- easy to update

Uni Innsbruck Informatik - 9

Downward links

Q

Uni Innsbruck Informatik - 8
Viceroy network /2

« Create a ring of nodes within the same level
- In addition to a “general” ring of all nodes

« Each node x at level i has two downward links to level i+1
- a left link to the first node

of level i+1 after position x
on the ring

- aright link to the first node
of level i+1 after pos. x + (%2)!

Uni Innsbruck Informatik - 10

Upward links

« Each node x at level i has an upward link
to the next node on the ring at level i-1

Uni Innsbruck Informatik - 11
Viceroy: Joining

Insert peer at random position of the general ring
Estimate log n by looking at the distance between a node and its successor
Randomly pick level i (uniformly distributed between 1 and log n)
. Find position in ViceRoy network via lookup starting at the ring neighbor
Insert peer into the ViceoRoy network level by
- Inserting peer in ring i of the network
- Finding the...
- Successor of (i,x)
- Successor of (i+1,x)
- Successor of (i+1,x+2')
- Predecessor of (i-1, x)
- Predecessor of (i-1, x-21)
- ...starting at the edges connected to the neighbor in ring i

OAWN =

« Complexity
- Lookup time (O(log n)) +
- Finding the successor / predecessor (O(log n))

Uni Innsbruck Informatik - 12

Viceroy: Searching

Peer (i,x) gets search request for (j,y)

IF i=j und |x-y| < (log n)2/n THEN
Forward search request to neighbor of ring i
ELSE
IF y is to the right of x+2! THEN
Forward request to successor of (i+1,x+27)
ELSE
Forward request to Z = successor of (i+1,x)
IF successor Z is to the right of x THEN

Search a node (i+1, p) with p<x on the ring (i+1), starting at Z
Fl

Fl
Fl

« With a high probability, this takes time (and messages) of O(log n)

Uni Innsbruck Informatik - 13

Viceroy conclusion

« First Peer-to-Peer network with constant in- and outdegree
- Outdegree 8, Indegree should be constant

« additional "multiple choice" mechanism was added to insertion
procedure to truly make it constant
(not included on previous slide about insertion for simplicity)

e ...but:
- Multiple ring structure quite complex
- Multiple choice method causes O(log2n) insertion complexity
- As we will see, there are easier networks with similar properties

Uni Innsbruck Informatik - 14
Distance Halving

« Published by Moni Naor and Udi Wieder in 2003
- Moni Naor is also a coauthor of the Viceroy paper :-)

« Based on continuous graphs
- Infinite graphs with continuous node and edge set

« In Distance Halving:
- Nodes: x € [0,1)
- Edges:
» Left-edges: (x,x/2)
« Right-edges: (x,1/2+x/2)
« and edges back:
- (x/2,x)
- (1/2+x/2,x)

« Note that distance halves with (%,1/2 + x/2)
every step = hence the name :-)

Uni Innsbruck Informatik - 15

Discretization

« Consider fixed number of discrete (%72}
intervals in the continuous space
- formed by successive halving

« Insert an edge between intervals A
and B If therearex e Aandy € B
such that (x,y) is an edge of the
continuous graph

« Possible (simple) implementation:
peers pick a random position in [0,1)
- They are responsible for data from
their position to their successor

« Neighboring intervals are also
bidirectionally connected (ring) %102 + %2}

Uni Innsbruck Informatik - 16

Multiple choice principle

« Goal, as in Viceroy: constant degree
- Emerges if ratio between largest and smallest interval is constant

- With a high probability, largest interval = 2/n, smallest interval = 1/(2n)
= constant degree

- ... and logarithmic diameter

« Degree of 4 can be achieved via multiple choice principle for joining
(goal: evenly spread nodes across range):
- Send c log n queries to randomly chosen intervals
Select largest interval and halve it
Update ring edges
Update left- and right-edges

« Time and number of messages for inserting peers: O(logZn)

Uni Innsbruck Informatik - 17

Routing

« Distance is halved with each step
- O(log n) hops and messages

« Example algorithm:
Left-Routing (src, dst)

-IF dst is in neighbor interval
« Forward query to dst

-ELSE
« newsrc = left-edge(src);
« newDst = left-edge(dst); i} 4
+ Send message from src to newSrc; —, A

P /
« Left-Routing(newSrc, newDst); }—‘—'®—’—b—|

s newSrc. dst newDst
« Send message from newDst to dst;

—
newsrc ’nestl‘,_«' src st

« Note: this only uses left-edges
- Could also be done with right-edges only

Uni Innsbruck Informatik - 18

Routing and conclusion

« Left- and right-edges can be combined using an arbitrary strategy
(alternate, random, ..)
- Congestion (number of packets transmitted by each peer) is O(log n) in
the worst case (when every peer sends a request)
- Proof based on similar proof for hypercube; same result can also be
shown for Viceroy

« Conclusion: simple and efficient structure

- degree O(1), diameter O(log n), lookup O(log n), join O(logZn),
load balancing

« Principle of discretizing continuous graphs also used in other DHTs
- But this is the first time the problem was explicitly formulated like this

Uni Innsbruck Informatik - 19

Enhancing Chord: degree or diameter?

« Chord: degree O(log n), diameter O(log n)
- Making these smaller is desirable

« Question 1: can we get a smaller diameter with degree g=0O(log n)?
- Distance 1: at most g nodes
- Distance 2: at most g2 nodes
- = thus, distance d: g¢ nodes

« Hence: (logmn)? =

logn

« It follows that: =TT

« Therefore, only minor improvement of diameter possible

Uni Innsbruck Informatik - 20

Koorde

« Karger, Kasshoek (2003)

« Goal: maintain Chord‘s O(log n) diameter make in- and outdegree = 2
- This can be done with a binary tree, a butterfly net, a DeBruijn graph...

« Foundation: operations on binary string S of length m
- Shuffle:
« shuffle(s,, S, S3,--+» Sp) = Sh_uffle EXChange

(52,535+++» Sm»S1) of(1 il o[r ||| J[o]l1
- Exchangé: ? ' LrlLFl L‘Ju
« exchange(s;, sy, S3,.-., Sp) = 1[0 (el))e] UULUUIJU

(S15 S35 S35+++» S)

- Shuffle-Exchange: Shuffle Exchange
« SE(S) = exchange(shuffle(S)) 1 ||l|£| |
= (52:535++5 Sy 7 S4)
1 o)1](1]

Uni Innsbruck Informatik - 21

Shuffle and exchange

« Any string A can be turned into
any string B by applying Shuffle and
Shuffle-exchange operations m times

Example:

From o1 1 1 0 11
to 100 1 1 1 1
via SE SE SE S SE S S

operations

Uni Innsbruck Informatik - 22

The DeBruijn Graph

« A DeBruijn graph consists of n=2™ nodes
- represented as m-digit binary numbers

« Every node has two outgoing edges
- 1. edge points from u to shuffle(u)
- 2. edge points from u to SE(u)

« DeBruijn-Graph has degree
2 and m=log,n diameter

« Koorde = Ring +
DeBruijn-Graph
- Ring of 2™ nodes +
DeBruijn edges

Uni Innsbruck Informatik - 23
Koorde = Ring + DeBruijn Graph

« Edges
- shuffle(s;, Sy,..., Sy) = (S, L50)
= shuffle (x) = (x d1v Z"‘)+ (Zx) mod 70
- SE(S) = (52,53,
= SE(x) = 1-(x d|v zm)+ (Zx) mod 2m
- (x div 2™) can be either 0 or 1
=> successors of x are 2x mod 2™
and 2x+1 mod 2™

« Exactly 2™ nodes unlikely in a
P2P network
- Choose large m (typically 128 or 160) =
more DeBruijn nodes than peers
Unoccupied DeBruijn nodes become
“virtual nodes*
- Every peer manages all DeBruijn nodes
between itself and successor
- Only necessary for incoming edges

Uni Innsbruck Informatik - 24

Koorde properties

« Per definition, four edges per node

« With high probability
- at most O(log n) incoming edges per node
— Reason:
— distance to next peer is at most c (log n)/2™ (with high probability)

— this is the max. interval from which peers can point to a peer (and its
virtual nodes)

— Within this interval, there are at most O(log n) peers with high probability
- Diameter = O(log n)
- Routing requires O(log n) messages

« But low coherence of Koorde graph

K-degree DeBruijn Graph

« Consider alphabet over k letters,
eg. k=3

« Each k-DeBruijn-node x has successors

-(kx mod k™), (kx +1 mod k™), (kx+2 mod
k™M), ..., (kx+k-1 mod k™)

« Diameter becomes
(log m)/(log k)

« Coherence grows with k

Uni Innsbruck Informatik - 25

Uni Innsbruck Informatik - 26

References / acknowledgments

« Slides from:
- Jussi Kangasharju
- Christian Schindelhauer
- Klaus Wehrle

