
Uni Innsbruck Informatik Uni Innsbruck Informatik -- 11

PeerPeer--toto--PeerPeer SystemsSystems

DHTDHT examplesexamples, , partpart 33
(Symphony, (Symphony, ViceroyViceroy, Distance , Distance HalvingHalving, , KoordeKoorde))

Michael Welzl Michael Welzl michael.welzl@uibk.ac.atmichael.welzl@uibk.ac.at

DPSDPS NSGNSG Team Team http://http://dps.uibk.ac.atdps.uibk.ac.at//nsgnsg
Institute of Computer ScienceInstitute of Computer Science
University of Innsbruck, University of Innsbruck, AustriaAustria

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 22

SymphonySymphony

• Key idea: Distributed Hashing in a Small World
– Start with Chord, but discard the strong requirements on the routing table (finger

table); rely on small world (random links) to reach the destination

• Construction

– Map the nodes and keys to the ring

– Link every node with its successor and predecessor

– Add k random links with probability

proportional to 1/(d·log N),

where d is the distance on the ring

– Lookup time O(log2 N)

– If k = log N lookup time O(log N)

– Easy to insert and remove nodes

(perform periodical refreshes for the links)

• O(log2 N) expected messages

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 33

Symphony /2Symphony /2
Nodes arranged in a unit circle (perimeter = 1)

Arrival ⇒ Node chooses position along circle
uniformly at random

Each node has 1 short link (next node on circle)
and k long links

node long link short link

A typical Symphony network

Fault Tolerance:
No backups for long links! Only short links
are fortified for fault tolerance.

Adaptation of Small World Idea: [Kleinberg00]
Long links chosen from a probability distribution
function: p(x) = 1 / x log n where n = #nodes.

Simple greedy routing:
“Forward along that link that minimizes
the absolute distance to the destination.”

Average lookup latency = O((log2 n) / k) hops

n ?

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 44

Symphony /3Symphony /3

• Key problem: network size estimation
– Based on family of harmonic functions (as PDF), hence the name

• Symphony optimizations:
– Bi-directional Routing

• Exploit both outgoing and incoming links!
• Route to the neighbor that minimizes absolute distance to destination
• Reduces avg latency by 25-30%

– 1-Lookahead
• List of neighbor’s neighbors; reduces avg. latency by 40%

x = Length of arc
1/x = Estimate of n
p(x)= 1 / (x log n)

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 55

ViceroyViceroy

• is a butterfly

• Butterfly = well known network topology with some desirable properties
– Small degree (4) and small (proven to be close to optimal) diameter
– Logarithmic path length between any two nodes
– Simple routing, no bottlenecks, high resilience

Thanks to google :-)

Theory Ideal case in Viceroy

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 66

Routing in a butterfly networkRouting in a butterfly network

• That‘s a bit complicated and inefficient

• Hence, in Viceroy, nodes are also connected within each level

level 1

level 2

level 4

level 3

000 001 011010 100 101 110 111

level 1

level 2

level 4

level 3

000 001 011010 100 101 110 111

level 1

level 2

level 4

level 3

000 001 011010 100 101 110 111

level 1

level 2

level 4

level 3

000 001 011010 100 101 110 111

level 1

level 2

level 4

level 3

000 001 011010 100 101 110 111

level 1

level 2

level 4

level 3

000 001 011010 100 101 110 111

level 1

level 2

level 4

level 3

000 001 011010 100 101 110 111

level 1

level 2

level 4

level 3

000 001 011010 100 101 110 111

level 1

level 2

level 4

level 3

000 001 011010 100 101 110 111

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 77

Viceroy networkViceroy network

• Arrange nodes and keys on a ring
– like in Chord

• Assign to each node a level value
– chosen uniformly from the

set {1,…,log n}
– estimate n by taking the inverse

of the distance of the node
with its successor

– easy to update

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 88

Viceroy network /2Viceroy network /2

• Create a ring of nodes within the same level
– In addition to a “general” ring of all nodes

• Each node x at level i has two downward links to level i+1
– a left link to the first node

of level i+1 after position x
on the ring

– a right link to the first node
of level i+1 after pos. x + (½)i

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 99

Downward linksDownward links

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 1010

Upward linksUpward links

• Each node x at level i has an upward link
to the next node on the ring at level i-1

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 1111

ViceroyViceroy: : JoiningJoining

1. Insert peer at random position of the general ring
2. Estimate log n by looking at the distance between a node and its successor
3. Randomly pick level i (uniformly distributed between 1 and log n)
4. Find position in ViceRoy network via lookup starting at the ring neighbor
5. Insert peer into the ViceoRoy network level by

– Inserting peer in ring i of the network
– Finding the...

– Successor of (i,x)
– Successor of (i+1,x)
– Successor of (i+1,x+2i)
– Predecessor of (i-1, x)
– Predecessor of (i-1, x-2i)

– ...starting at the edges connected to the neighbor in ring i

• Complexity
– Lookup time (O(log n)) +
– Finding the successor / predecessor (O(log n))

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 1212

ViceroyViceroy: : SearchingSearching

• Peer (i,x) gets search request for (j,y)

IF i=j und |x-y| ≤ (log n)2/n THEN
Forward search request to neighbor of ring i

ELSE
IF y is to the right of x+2i THEN

Forward request to successor of (i+1,x+2i)
ELSE

Forward request to Z = successor of (i+1,x)
IF successor Z is to the right of x THEN

Search a node (i+1, p) with p<x on the ring (i+1), starting at Z
FI

FI
FI

• With a high probability, this takes time (and messages) of O(log n)

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 1313

ViceroyViceroy conclusionconclusion

• First Peer-to-Peer network with constant in- and outdegree
– Outdegree 8, Indegree should be constant

• additional “multiple choice“ mechanism was added to insertion
procedure to truly make it constant
(not included on previous slide about insertion for simplicity)

• ...but:
– Multiple ring structure quite complex
– Multiple choice method causes O(log2n) insertion complexity
– As we will see, there are easier networks with similar properties

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 1414

Distance Distance HalvingHalving

• Published by Moni Naor and Udi Wieder in 2003
– Moni Naor is also a coauthor of the Viceroy paper :-)

• Based on continuous graphs
– Infinite graphs with continuous node and edge set

• In Distance Halving:
– Nodes: x ∈ [0,1)
– Edges:

• Left-edges: (x,x/2)
• Right-edges: (x,1/2+x/2)
• and edges back:

– (x/2,x)
– (1/2+x/2,x)

• Note that distance halves with
every step ⇒ hence the name :-)

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 1515

DiscretizationDiscretization

• Consider fixed number of discrete
intervals in the continuous space

– formed by successive halving

• Insert an edge between intervals A
and B If there are x ∈ A and y ∈ B
such that (x,y) is an edge of the
continuous graph

• Possible (simple) implementation:
peers pick a random position in [0,1)

– They are responsible for data from
their position to their successor

• Neighboring intervals are also
bidirectionally connected (ring)

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 1616

Multiple Multiple choicechoice principleprinciple

• Goal, as in Viceroy: constant degree
– Emerges if ratio between largest and smallest interval is constant
– With a high probability, largest interval = 2/n, smallest interval = 1/(2n)

⇒ constant degree
– ... and logarithmic diameter

• Degree of 4 can be achieved via multiple choice principle for joining
(goal: evenly spread nodes across range):
- Send c log n queries to randomly chosen intervals
- Select largest interval and halve it
- Update ring edges
- Update left- and right-edges

• Time and number of messages for inserting peers: O(log2n)

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 1717

RoutingRouting

• Distance is halved with each step
– O(log n) hops and messages

• Example algorithm:
Left-Routing (src, dst)

–IF dst is in neighbor interval
• Forward query to dst

–ELSE
• newSrc = left-edge(src);
• newDst = left-edge(dst);
• Send message from src to newSrc;
• Left-Routing(newSrc, newDst);
• Send message from newDst to dst;

• Note: this only uses left-edges
– Could also be done with right-edges only

newDstnewSrc src dst

newDstnewSrcsrc dst

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 1818

RoutingRouting and and conclusionconclusion

• Left- and right-edges can be combined using an arbitrary strategy
(alternate, random, ..)
– Congestion (number of packets transmitted by each peer) is O(log n) in

the worst case (when every peer sends a request)
– Proof based on similar proof for hypercube; same result can also be

shown for Viceroy

• Conclusion: simple and efficient structure
– degree O(1), diameter O(log n), lookup O(log n), join O(log2n),

load balancing

• Principle of discretizing continuous graphs also used in other DHTs
– But this is the first time the problem was explicitly formulated like this

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 1919

EnhancingEnhancing ChordChord: : degreedegree oror diameterdiameter??

• Chord: degree O(log n), diameter O(log n)
– Making these smaller is desirable

• Question 1: can we get a smaller diameter with degree g=O(log n)?
– Distance 1: at most g nodes
– Distance 2: at most g2 nodes
– ⇒ thus, distance d: gd nodes

• Hence:

• It follows that:

• Therefore, only minor improvement of diameter possible

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 2020

KoordeKoorde

• Karger, Kasshoek (2003)

• Goal: maintain Chord‘s O(log n) diameter make in- and outdegree = 2
– This can be done with a binary tree, a butterfly net, a DeBruijn graph...

• Foundation: operations on binary string S of length m
– Shuffle:

• shuffle(s1, s2, s3,..., sm) =
(s2,s3,..., sm,s1)

– Exchange:
• exchange(s1, s2, s3,..., sm) =

(s1, s2, s3,..., ¬sm)
– Shuffle-Exchange:

• SE(S) = exchange(shuffle(S))
= (s2,s3,..., sm, ¬ s1)

ShuffleShuffle ExchangeExchange

Shuffle-ExchangeShuffle-Exchange

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 2121

ShuffleShuffle and and exchangeexchange

• Any string A can be turned into
any string B by applying Shuffle and
Shuffle-exchange operations m times

Example:
From 0 1 1 1 0 1 1

to 1 0 0 1 1 1 1
via SE SE SE S SE S S

operations

SE

SE

S

S

S

SE

SE

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 2222

TheThe DeBruijnDeBruijn GraphGraph

• A DeBruijn graph consists of n=2m nodes
– represented as m-digit binary numbers

• Every node has two outgoing edges
– 1. edge points from u to shuffle(u)
– 2. edge points from u to SE(u)

• DeBruijn-Graph has degree
2 and m=log2n diameter

• Koorde = Ring +
DeBruijn-Graph

– Ring of 2m nodes +
DeBruijn edges

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 2323

KoordeKoorde = Ring + = Ring + DeBruijnDeBruijn GraphGraph

• Edges
– shuffle(s1, s2,..., sm) = (s2,..., sm,s1)
⇒ shuffle (x) = (x div 2m)+ (2x) mod 2m

– SE(S) = (s2,s3,..., sm, ¬ s1)
⇒ SE(x) = 1-(x div 2m)+ (2x) mod 2m

– (x div 2m) can be either 0 or 1
⇒ successors of x are 2x mod 2m

and 2x+1 mod 2m

• Exactly 2m nodes unlikely in a
P2P network

– Choose large m (typically 128 or 160) ⇒
more DeBruijn nodes than peers

•
Unoccupied DeBruijn nodes become
“virtual nodes“

– Every peer manages all DeBruijn nodes
between itself and successor

– Only necessary for incoming edges
virtual
nodes

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 2424

KoordeKoorde propertiesproperties

• Per definition, four edges per node

• With high probability
– at most O(log n) incoming edges per node

– Reason:
– distance to next peer is at most c (log n)/2m (with high probability)
– this is the max. interval from which peers can point to a peer (and its

virtual nodes)
– Within this interval, there are at most O(log n) peers with high probability

– Diameter = O(log n)
– Routing requires O(log n) messages

• But low coherence of Koorde graph

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 2525

KK--degreedegree DeBruijnDeBruijn GraphGraph

• Consider alphabet over k letters,
e.g. k = 3

• Each k-DeBruijn-node x has successors
–(kx mod km), (kx +1 mod km), (kx+2 mod
km), ... , (kx+k-1 mod km)

• Diameter becomes
(log m)/(log k)

• Coherence grows with k

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 2626

ReferencesReferences / / acknowledgmentsacknowledgments

• Slides from:
– Jussi Kangasharju
– Christian Schindelhauer
– Klaus Wehrle

