
Uni Innsbruck Informatik Uni Innsbruck Informatik -- 11

PeerPeer--toto--PeerPeer SystemsSystems

DHTDHT examplesexamples, , partpart 22
((PastryPastry, , TapestryTapestry and and KademliaKademlia))

Michael Welzl Michael Welzl michael.welzl@uibk.ac.atmichael.welzl@uibk.ac.at

DPSDPS NSGNSG Team Team http://http://dps.uibk.ac.atdps.uibk.ac.at//nsgnsg
Institute of Computer ScienceInstitute of Computer Science
University of Innsbruck, University of Innsbruck, AustriaAustria

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 22

PlaxtonPlaxton routingrouting

• Plaxton, Rajamaran and Richa: mechanism for efficient
dissemination of objects in a network, published in 1997
– Before P2P systems came about!

• Basic idea: prefix-oriented routing (fixed number of nodes assumed)
– Object with ID A is stored at the node whose ID has the longest common

prefix with A
• If multiple such nodes exist, node with longst common suffix is chosen

– Goal: uniform data dissemination
– Routing based on pointer list (object – node mapping) and

neigbor list (primary + secondary neighbors)
– Generalization of routing on a hypercube

• Basis for well known DHTs Pastry, Tapestry (and follow-up projects)
– Method adapted to needs of P2P systems + simplified

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 33

x0x1x2...xl-1 (x∈{0,1}) → x0x1x2...xl/b (x∈{0,1,...,2b-1})

Pastry: TopologyPastry: Topology

• Identifier space:
– 2l-bit identifiers (typically: l = 128), wrap-around at 2l - 1 ↔ 0
– interpret identifiers to the base of 2b (typically: b = 4, base 16)
– prefix-based tree topology
– leaves can be keys and node IDs
– (key, value) pairs managed by numerically closest node

managed by

xxx

l=6: 6-bit identifiers
b=2: base 4

0xx 1xx 2xx 3xx

00x 01x 02x 03x 10x 11x 12x 13x 20x 21x 22x 23x 30x 31x 32x 33x

key node

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 44

Pastry: Routing BasicsPastry: Routing Basics

• Goal: find node responsible for k, e.g. 120
• Tree-based search for lookup(k)

– Traverse tree search structure top-down

• Prefix-based routing for lookup(k)
– Approximate tree search in distributed scenario
– Forward query to known node with longest prefix matching k

xxx

0xx 1xx 2xx 3xx

00x 01x 02x 03x 10x 11x 12x 13x 20x 21x 22x 23x 30x 31x 32x 33x

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 55

Pastry: Routing Basics /2Pastry: Routing Basics /2

• Routing in Pastry:
– In each routing step,

query is routed towards
“numerically“ closest node

• That is, query is routed
to a node with a
one character longer
prefix (= b Bits)

routing steps

– If that is not possible:
• route towards node that is

numerically closer to ID

)(log
2

NO b

012321

321321

022222

013331

012110

012300

012322

012321

Destination:

Start

1. Hop

2. Hop

3. Hop

4. Hop

5. Hop

Destination:

(b = 2)

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 66

Pastry: Routing Basics /3Pastry: Routing Basics /3

• Example:
– Node-ID = 0221
– Base = 3 (not power of 2, because it is easier to draw ;-))

0… 1… 2…

00.. 01..

02..

10.. 11..

12..

20.. 21..

22..

000. 001.

002.

100. 101.

102.

200. 201.

202.

0002

0221

2012

0211

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 77

Pastry: Routing Basics /4Pastry: Routing Basics /4

• Data (key-value-pairs) are managed in numerically closest node
– keys nodes:

0002 0002, 01** 0110

• Linking between Prefix-areas:
– Nodes within a certain prefix area know IP addresses of each other

– Each node in a prefix area knows one or more nodes from another prefix
area

• From which prefix areas should a node know other nodes?
– Links to shorter-prefix node areas on each prefix level

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 88

Pastry: Routing Basics /5Pastry: Routing Basics /5

• Example:
– Node in area 222* knows nodes from prefix areas

220*, 221* & 20**, 21** & 0***, 1***

– Logarithmic number of links:

• For prefix-length p: (base-1) links to other nodes with prefix length p,
but with a different digit at position p

• l/b different prefix-lengths: l ~ log(N)

0… 1… 2…

20.. 21..

22..

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 99

Pastry: Routing InformationPastry: Routing Information

• Challenges
– Efficiently distribute search tree among nodes
– Honor network proximity

• Pastry routing data per node
– Routing table

• Long-distance links to other nodes

– Leaf set
• Numerically close nodes

– Neighborhood set
• Close nodes based on proximity metric (typically ping latency)

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 1010

Pastry: Routing TablePastry: Routing Table

• Routing table
– Long distance links to other prefix realms
– l/b rows: one per prefix length
– 2b-1 columns: one per digit different from local node ID

– Routing table for node 120:

xxx

0xx 1xx 2xx 3xx

00x 01x 02x 03x 10x 11x 12x 13x 20x 21x 22x 23x 30x 31x 32x 33x

12?:

1?x:

?xx:

123--0

-2-102

301-1011

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 1111

Pastry: Routing TablePastry: Routing Table

• rows with 2b-1 entries each
– row i: hold IDs of nodes whose ID share an i-digit prefix with node
– column j: digit(i+1) = j
– Contains topologically closest node that meets these criteria

• Example: b=2, Node-ID = 32101

3210332102––321004

321313212132110––3

3230132212––320122

33123––31230303311

––2222213320012300

32 10i j

Digit at
position i+1

Shared prefix
length with
Node-ID

Topologically closest
node with prefix length i
and digit(i+1)=j

Possible node: 33xyz
33123 is topologically
closest node

⎡ ⎤Nb2log

These entries match
node 32101’s ID

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 1212

Pastry: Routing InformationPastry: Routing Information

• Leaf set
– contains numerically closest nodes

(l/2 smaller and l/2 larger keys)

– fixed maximum size

– similar to Chord's succ/pred list

– for routing and recovery from
node departures

• Neighbor set
– contains nearby nodes

– fixed maximum size

– scalar proximity metric assumed to be available

• e.g., IP hops, latency

– irrelevant for routing

– 'cache' of nearby candidates for routing table

32120321233202232012

32121321103202332100

higher Node-IDsSmaller Node-IDs

32120321233202232012

32121321103202332100

higher Node-IDsSmaller Node-IDs

Node-ID = 32101

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 1313

Pastry Routing AlgorithmPastry Routing Algorithm

• Routing of packet with destination K at node N:

1. Is K in Leaf Set, route packet directly to that node

2. If not, determine common prefix (N, K)

3. Search entry T in routing table with prefix (T, K) > prefix (N, K),

and route packet to T

4. If not possible, search node T with longest prefix (T, K) out of merged set

of routing table, leaf set, and neighborhood set and route to T

This was shown to be a rare case

– Access to routing table O(1), since row and column are known

– Entry might be empty if corresponding node is unknown

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 1414

Pastry: Routing ProcedurePastry: Routing Procedure

• Long-range routing
– if key k not covered by leaf set:
– forward query for k to

• node with longer prefix match than self or
• same prefix length but numerically closer

Node 103220

21032101032?x:

310230310120310022110?xxx:

1033022103112103?xx:

10322?:

1?xxxx:

?xxxxx:

0

1320121201321100030

3122012013031031120

leaf set 103330103302103210103123

lookup(102332)

→ 102303

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 1515

Pastry: Routing ProcedurePastry: Routing Procedure

• Close-range routing
– k covered by nodes IDs in leaf set
– pick leaf node nL numerically closest to k
– nL must be responsible for k → last step in routing procedure
– return nL as answer to query for k

Node 103220

21032101032?x:

310230310120310022110?xxx:

1033022103112103?xx:

10322?:

1?xxxx:

?xxxxx:

0

1320121201321100030

3122012013031031120

leaf set 103330103302103210103123

lookup(103312)

103302

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 1616

AnotherAnother exampleexample

3210332102––321004

321313212132110––3

3230132212––320122

33123––31230303311

––2222214320012340

32 10i j

Node-ID = 32101

Key = 32200
Common prefix:
32101
32200

322--

Common prefix:
32101
33122

33---

Key = 33122Key = 01200
Common prefix:
32101
01200

0----

Key = 32102

Node is in
range of
Leaf-Set

32120321233202232012

32121321103202332100

> Node-ID< Node-ID

32120321233202232012

32121321103202332100

> Node-ID< Node-IDRouting table

Leaf set

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 1717

Arrival of a new nodeArrival of a new node
• Node X wants to join

Pastry DHT
– Determine NodeID of X

12333 (hash of IP address)
– Initialize tables at node X
– Send JOIN message to key 12333 via

topologically nearest Pastry node
– Node currently in charge of this key: z

JOIN X

X = 12333
A4 = Z = 12332

A1 = 13231

A2 = 12222

A3 = 12311

A0 = 23231

> Node-ID< Node-ID

4

3

2

1

0

32 10i \ j

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 1818

Arrival of a new node /2Arrival of a new node /2
• Node X wants to join

Pastry DHT
– Node X copies Neighbor-Set

from node A0

> Node-ID< Node-ID

11213210211100100100

32123012131230032022

4

3

2

1

0

32 10i \ j

X = 12333
A4 = Z = 12332

A1 = 13231

A2 = 12222

A3 = 12311

A0 = 23231

Copy
Neighbor-Set

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 1919

Arrival of a new node /3Arrival of a new node /3
• Node X wants to join

Pastry DHT
– Node A0 routes message

to node Z
– Each node sends row in

routing table to X
– Here A0

JOIN X

X = 12333
A4 = Z = 12332

A1 = 13231

A2 = 12222

A3 = 12311

A0 = 23231

> Node-ID< Node-ID

4

3

2

1

3233113231022310

32 10i \ j

11213210211100100100

32123012131230032022

11213210211100100100

32123012131230032022

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 2020

Arrival of a new node /4Arrival of a new node /4
• Node X wants to join

Pastry DHT
– Node A0 routes message

to node Z
– Each node sends row in

routing table to X
– Here A1

JOIN X

X = 12333
A4 = Z = 12332

A1 = 13231

A2 = 12222

A3 = 12311

A0 = 23231

> Node-ID< Node-ID

4

3

2

1222211312101221

3233113231022310

32 10i \ j

11213210211100100100

32123012131230032022

11213210211100100100

32123012131230032022

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 2121

Arrival of a new node /5Arrival of a new node /5
• Node X wants to join

Pastry DHT
– Node A0 routes message

to node Z
– Each node sends row in

routing table to X
– Here A2

JOIN X
X = 12333

A4 = Z = 12332

A1 = 13231

A2 = 12222

A3 = 12311

A0 = 23231

> Node-ID< Node-ID

4

3

1231112111120332

1222211312101221

3233113231022310

32 10i \ j

11213210211100100100

32123012131230032022

11213210211100100100

32123012131230032022

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 2222

Arrival of a new node /6Arrival of a new node /6
• Node X wants to join

Pastry DHT
– Node A0 routes message

to node Z
– Each node sends row in

routing table to X
– Here A3

X = 12333
A4 = Z = 12332

A1 = 13231

A2 = 12222

A3 = 12311

A0 = 23231

> Node-ID< Node-ID

4

1233212320123013

1231112111120332

1222211312101221

3233113231022310

32 10i \ j

JOIN X

11213210211100100100

32123012131230032022

11213210211100100100

32123012131230032022

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 2323

Arrival of a new node /7Arrival of a new node /7
• Node X wants to join

Pastry DHT
– Node A0 routes message

to node Z
– Each node sends row in

routing table to X
– Here A4

JOIN X

X = 12333
A4 = Z = 12332

A1 = 13231

A2 = 12222

A3 = 12311

A0 = 23231

> Node-ID< Node-ID

1233312331123304

1233212320123013

1231112111120332

1222211312101221

3233113231022310

32 10i \ j

11213210211100100100

32123012131230032022

11213210211100100100

32123012131230032022

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 2424

Arrival of a new node /8Arrival of a new node /8
• Node X wants to join

Pastry DHT
– Node Z copies its Leaf-Set

to Node X

Copy Leaf-Set
to X

X = 12333
A4 = Z = 12332

A1 = 13231

A2 = 12222

A3 = 12311

A0 = 23231

13003130011233012331

13000123331232212311

> Node-ID< Node-ID

12333-12331123304

1233212320-123013

12311-12111120332

-1222211312101221

32331-13231022310

32 10i \ j

11213210211100100100

32123012131230032022

11213210211100100100

32123012131230032022

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 2525

Arrival of a new node /9Arrival of a new node /9
• Some entries are doubtable

– Entries pointing to “own-ID-
positions” not required

• Some are missing
– Take the node-IDs just visited

X = 12333
A4 = Z = 12332

A1 = 13231

A2 = 12222

A3 = 12311

A0 = 23231

13003130011233012331

13000123331232212311

> Node-ID< Node-ID

12333-12331123304

1233212320-123013

12311-12111120332

-1222211312101221

32331-13231022310

32 10i \ j

--

--

--

--

--

23231
13231

12222

12311

12332

11213210211100100100

32123012131230032022

11213210211100100100

32123012131230032022

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 2626

Arrival of a new node /10Arrival of a new node /10
• Node X wants to join

Pastry DHT
– Node x sends its routing

table to each neighbor

JOIN X

X = 12333
A4 = Z = 12332

A1 = 13231

A2 = 12222

A3 = 12311

A0 = 23231

13003130011233012331

13000123331232212311

> Node-ID< Node-ID

-12331123304

12320-123013

-12111120332

1312111312101221

32331-022310

32 10i \ j

23231
13231

12222

12311

12332

11213210211100100100

32123012131230032022

11213210211100100100

32123012131230032022

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 2727

Arrival of a new node /11Arrival of a new node /11

• Efficiency of initialization procedure
– Quality of routing table (b=4, l=16, 5k nodes)

SL: transfer only the ith routing table row of Ai

WT: transfer of ith routing table row of Ai as well as analysis of leaf and neighbor set

WTF: same as WT, but also query the newly discovered nodes from WT and analyse data

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 2828

Failure of Pastry NodesFailure of Pastry Nodes

• Detection of failure

– Periodic verification of nodes in Leaf Set

• “Are you alive” also checks capability of neighbor

– Route query fails

• Replacement of corrupted entries

– Leaf-Set

• Choose alternative node from Leaf (L) ∪ Leaf (±|L|/2)

• Ask these nodes for their Leaf Sets

– Entry Rx y in routing table failed:

• Ask neighbor node Rx i (i≠y) of same row for route to Rx y

• If not successful, test entry Rx++ i in next row

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 2929

Performance EvaluationPerformance Evaluation

• Routing Performance
– Number of Pastry hops (b=4,

l=16, 2·105 queries

– O(log N) for number of hops
in the overlay

– Overhead of overlay
(in comparison to route
between two node in the IP network)

– But:
Routing table has only O(log N)
entries instead of O(N)

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 3030

LocalityLocality

• In routing, if multiple peers match, the next hop is chosen based on
some metric
– Typically RTT

• This is done based on local information
– May not generally route in the right direction

• Expected latency grows with
every hop
– Last hops most expensive; but:

the closer we get to the destination,
the more likely it is that the leaf set
can be used

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 3131

Summary PastrySummary Pastry

• Complexity:
– O(log N) hops to destination

• Often even better through Leaf- and Neighbor-Set:

– O(log N) storage overhead per node

• Good support of locality
– Explicit search of close nodes (following some metric)

• Used in many applications
– PAST (file system), Squirrel (Web-Cache), …
– Many publications available, open source implementation: FreePastry

)(log
2

NO b

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 3232

TapestryTapestry

• Tapestry developed at UC Berkeley
– Different group from CAN developers

• Tapestry developed in 2000, but published in 2004
– Originally only as technical report, 2004 as journal article

• Many follow-up projects on Tapestry
– Example: OceanStore

• Like Pastry, based on work by Plaxton et al.

• Pastry was developed at Microsoft Research and Rice University
– Difference between Pastry and Tapestry minimal
– Tapestry and Pastry add dynamics and fault tolerance to Plaxton network

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 3333

Tapestry: Routing MeshTapestry: Routing Mesh

• (Partial) routing mesh for a single node 4227
– Neighbors on higher levels match more digits

4228 27AB

6F43

43C9
51E5 4242

1D76

44AF

4227

L1

L1L1

L1
L4

L2

L2
L3

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 3434

Tapestry: Neighbor Map for 4227Tapestry: Neighbor Map for 4227

42284

42A23

44AF43C92

6F4351E527AB1D761

A8654321Level

• There are actually 16 columns in the map (base 16)
• Normally more entries would be filled (limited by a constant)
• Tapestry has multiple neighbor maps

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 3535

Tapestry: Routing ExampleTapestry: Routing Example

• Route message from 5230 to 42AD
• Always route to node closer to target

– At nth hop, look at n+1th level in neighbor map --> “always” one digit more
• Not all nodes and links are shown

42AD

5230
400F

4227 4629

42A2

AC78

42A7

4112

4211

42E0

42A9

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 3636

Tapestry: PropertiesTapestry: Properties

• Node responsible for objects which have the same ID
– Unlikely to find such node for every object
– Node also responsible for “nearby” objects (surrogate routing, see below)

• Object publishing
– Responsible nodes only store pointers

• Multiple copies of object possible
• Each copy must publish itself

– Pointers cached along the publish path
– Queries routed towards responsible node
– Queries “often” hit cached pointers

• Queries for same object go (soon) to same nodes

• Note: Tapestry focuses on storing objects
– Chord and CAN focus on values, but in practice no difference

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 3737

Tapestry: Publishing ExampleTapestry: Publishing Example

• Two copies of object “DOC” with ID 4377 created at AA93 and 4228
• AA93 and 4228 publish object DOC, messages routed to 4377

– Publish messages create location pointers on the way
• Any subsequent query can use location pointers

4377

AA93

4228

43FE

437A

4361

4664 4B4F

E791

4A6D

57EC

DOC

DOC

Routing path
Publish path

Location pointer

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 3838

Tapestry: Querying ExampleTapestry: Querying Example

• Requests initially route towards 4377
• When they encounter the publish path, use location pointers to find object
• Often, no need to go to responsible node
• Downside: Must keep location pointers up-to-date

4377

AA93

4228

43FE

437A

4361

4664 4B4F

E791

4A6D

57EC

DOC

DOC

Routing path

Location pointer

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 3939

Tapestry: Making It WorkTapestry: Making It Work

• Previous examples show a Plaxton network
– Requires global knowledge at creation time
– No fault tolerance, no dynamics

• Tapestry adds fault tolerance and dynamics
– Nodes join and leave the network
– Nodes may crash
– Global knowledge is impossible to achieve

• Tapestry picks closest nodes for neighbor table
– Closest in IP network sense (= shortest RTT)
– Network distance (usually) transitive

• If A is close to B, then B is also close to A
– Idea: Gives best performance

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 4040

Tapestry: FaultTapestry: Fault--Tolerant RoutingTolerant Routing

• Tapestry keeps mesh connected with keep-alives
– Both TCP timeouts and UDP “hello” messages
– Requires extra state information at each node

• Neighbor table has backup neighbors
– For each entry, Tapestry keeps 2 backup neighbors
– If primary fails, use secondary

• Works well for uncorrelated failures

• When node notices a failed node, it marks it as invalid
– Most link/connection failures short-lived
– Second chance period (e.g., day) during which failed node can come back

and old route is valid again
– If node does not come back, one backup neighbor is promoted and a new

backup is chosen

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 4141

Tapestry: FaultTapestry: Fault--Tolerant LocationTolerant Location

• Responsible node is a single point of failure

• Solution: Assign multiple roots per object
– Add “salt” to object name and hash as usual
– Salt = globally constant sequence of values (e.g., 1, 2, 3, …)

• Same idea as CAN’s multiple realities

• This process makes data more available, even if the network is partitioned
– With s roots, availability is P ≈ 1 - (1/2)s

– Depends on partition

• These two mechanisms “guarantee” fault-tolerance
– In most cases :-)
– Problem: If the only out-going link fails…

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 4242

Tapestry: Surrogate RoutingTapestry: Surrogate Routing

• Responsible node is node with same ID as object
– Such a node is unlikely to exist

• Solution: surrogate routing

• What happens when there is no matching entry in neighbor map for
forwarding a message?
– Node (deterministically) picks next entry in neighbor map

• If that one also doesn’t exist, next of next … and so on

• Idea: If “missing links” are deterministically picked, any message for that ID
will end up at same node
– This node is the surrogate

• If new nodes join, surrogate may change
– New node is neighbor of surrogate

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 4343

Surrogate Surrogate RoutingRouting ExampleExample

Peer 2716 searches for 4666:
2716

4233

4899

4860

Level 1, current digit j =4

Level 2, j=6 doesn‘t exist, next link: j=8

Level 3, j=6

Node 4860 doesn‘t have any level 4 neighbors => done

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 4444

Tapestry: PerformanceTapestry: Performance

• Messages routed in O(logb N) hops
– At each step, we resolve one more digit in ID
– N is the size of the namespace (e.g, SHA-1 = 40 digits)
– Surrogate routing adds a bit to this, but not significantly

• State required at a node is O(b logb N)
– Tapestry has c backup links per neighbor, O(cb logb N)
– Additionally, same number of backpointers

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 4545

Complexity comparison of Complexity comparison of DHTsDHTs so farso far

??O(log² N)?
Leave of node

O(log N)O(log N)O(log² N)Join of node

O(log N)O(log N)O(log N)
Pathlength
(Routing)

O(log N)O(log N)O(log N)O(D)
States per
node

TapestryPastryChordCAN

)(
1
DDNO

)(
1

4
DNO D

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 4646

KademliaKademlia

• From New York University
– Used in eMule, Overnet, Azureus, …

• Overlay:
– Tree

– Node Position:

• shortest unique prefix

– Service:

• Locate closest nodes to a desired ID

• Routing:
– “based on XOR metric”

– keep k nodes for each sub-tree which
shares the root as the sub-trees where p resides.

• Share the prefix with p

• Magnitude of distance (XOR)

• k: replication parameter (e.g. 20)

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 4747

KademliaKademlia –– Hashing and distanceHashing and distance

• Routing idea similar to Plaxton’s mesh: improve closeness one bit at a time
• Nodes and Keys are mapped to m-bit binary strings
• Distance between two identifiers: the XOR string, as a binary number

• If x and y agree in the first i digits and disagree in the (i+1)
then 2i ≤ d(x,y) ≤ 2i+1-1

x = 0 1 0 1 1 0
y = 0 1 1 0 1 1

x y = 0 0 1 1 0 1
d(x,y) = 13

x = 0 1 0 1 1 0
y = 0 1 1 1 1 0

x y = 0 0 1 0 0 0
d(x,y) = 8

x = 0 1 0 1 1 0
y = 0 1 1 0 0 1

x y = 0 0 1 1 1 1
d(x,y) = 15

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 4848

KademliaKademlia –– Routing tableRouting table

• Each node with ID x stores m k-buckets
– a k-bucket stores k nodes that are at distance [2i,2i+1-1]

• empty bucket if no nodes are known
– Continuous simple queries for values in k-buckets are used to refresh k-buckets

• full k-bucket: least-recently used node is removed

• Tables are updated when lookups are performed

• Due to XOR symmetry a node receives lookups from the nodes that are in its
own table

• Node Joins
– contact a participating node and insert it in the appropriate bucket
– perform a query for your own ID
– refresh all buckets

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 4949

KademliaKademlia –– LookupsLookups

• Process is iterative:
– everything is controlled by the initiator node
– query in parallel the α nodes closest to the query ID

• Parallel search: fast lookup at the expense of increased traffic
– nodes return the k nodes closest to the query ID
– go back to step 1, and select the α nodes from the new set of nodes
– Terminate when you have the k closest nodes

• Key lookups are done in a similar fashion, but terminate when key is found
– the requesting node cashes the key locally

• Underlying invariant:
– If there exists some node with ID within a specific range then k-bucket is not empty
– If the invariant is true, then the time is logarithmic
– we move one bit closer each time
– Due to refreshes the invariant holds with high probability

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 5050

KademliaKademlia vs. Chord and Pastryvs. Chord and Pastry

• Comparing with Chord
– Like Chord: achieves similar performance

• deterministic
• O(logN) contacts (routing table size)
• O(logN) steps for lookup service (?)
• Lower node join/leave cost

– Unlike Chord:
• Routing table: view of the network
• Flexible Routing Table

– Given a topology, there are more than one routing table
– Symmetric routing

• Comparing with Pastry
– Both have flexible routing table
– Better analysis properties

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 5151

ReferencesReferences / / acknowledgmentsacknowledgments

• Slides from:
– Jussi Kangasharju
– Christian Schindelhauer
– Klaus Wehrle

