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PlaxtonPlaxton routingrouting

• Plaxton, Rajamaran and Richa: mechanism for efficient
dissemination of objects in a network, published in 1997
– Before P2P systems came about!

• Basic idea: prefix-oriented routing (fixed number of nodes assumed)
– Object with ID A is stored at the node whose ID has the longest common 

prefix with A
• If multiple such nodes exist, node with longst common suffix is chosen

– Goal: uniform data dissemination
– Routing based on pointer list (object – node mapping) and

neigbor list (primary + secondary neighbors)
– Generalization of routing on a hypercube

• Basis for well known DHTs Pastry, Tapestry (and follow-up projects)
– Method adapted to needs of P2P systems + simplified
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x0x1x2...xl-1 (x∈{0,1}) → x0x1x2...xl/b (x∈{0,1,...,2b-1})

Pastry: TopologyPastry: Topology

• Identifier space:
– 2l-bit identifiers (typically: l = 128), wrap-around at 2l - 1 ↔ 0
– interpret identifiers to the base of 2b (typically: b = 4, base 16)
– prefix-based tree topology
– leaves can be keys and node IDs
– (key, value) pairs managed by numerically closest node

managed by

xxx

l=6: 6-bit identifiers
b=2: base 4

0xx 1xx 2xx 3xx

00x 01x 02x 03x 10x 11x 12x 13x 20x 21x 22x 23x 30x 31x 32x 33x

key node
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Pastry: Routing BasicsPastry: Routing Basics

• Goal: find node responsible for k, e.g. 120
• Tree-based search for lookup(k) 

– Traverse tree search structure top-down

• Prefix-based routing for lookup(k)
– Approximate tree search in distributed scenario
– Forward query to known node with longest prefix matching k

xxx

0xx 1xx 2xx 3xx

00x 01x 02x 03x 10x 11x 12x 13x 20x 21x 22x 23x 30x 31x 32x 33x
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Pastry: Routing Basics /2Pastry: Routing Basics /2

• Routing in Pastry:
– In each routing step, 

query is routed towards 
“numerically“ closest node

• That is, query is routed 
to a node with a 
one character longer 
prefix (= b Bits)

routing steps

– If that is not possible:
• route towards node that is 

numerically closer to ID

)(log
2

NO b

012321

321321

022222

013331

012110

012300

012322

012321

Destination:

Start

1. Hop

2. Hop

3. Hop

4. Hop

5. Hop

Destination:

(b = 2)
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Pastry: Routing Basics /3Pastry: Routing Basics /3

• Example: 
– Node-ID = 0221
– Base = 3 (not power of 2, because it is easier to draw ;-)  )

0… 1… 2…

00.. 01..

02..

10.. 11..

12..

20.. 21..

22..

000. 001.

002.

100. 101.

102.

200. 201.

202.

0002

0221

2012

0211
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Pastry: Routing Basics /4Pastry: Routing Basics /4

• Data (key-value-pairs) are managed in numerically closest node
– keys nodes:

0002 0002, 01** 0110

• Linking between Prefix-areas:
– Nodes within a certain prefix area know IP addresses of each other

– Each node in a prefix area knows one or more nodes from another prefix
area

• From which prefix areas should a node know other nodes?
– Links to shorter-prefix node areas on each prefix level
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Pastry: Routing Basics /5Pastry: Routing Basics /5

• Example:
– Node in area 222* knows nodes from prefix areas

220*, 221* & 20**, 21** & 0***, 1*** 

– Logarithmic number of links:

• For prefix-length p: (base-1) links to other nodes with prefix length p, 
but with a different digit at position p 

• l/b different prefix-lengths: l ~ log(N)

0… 1… 2…

20.. 21..

22..
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Pastry: Routing InformationPastry: Routing Information

• Challenges
– Efficiently distribute search tree among nodes
– Honor network proximity

• Pastry routing data per node
– Routing table

• Long-distance links to other nodes

– Leaf set
• Numerically close nodes

– Neighborhood set
• Close nodes based on proximity metric (typically ping latency)
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Pastry: Routing TablePastry: Routing Table

• Routing table
– Long distance links to other prefix realms
– l/b rows: one per prefix length
– 2b-1 columns: one per digit different from local node ID

– Routing table for node 120:

xxx

0xx 1xx 2xx 3xx

00x 01x 02x 03x 10x 11x 12x 13x 20x 21x 22x 23x 30x 31x 32x 33x

12?:

1?x:

?xx:

123--0

-2-102

301-1011
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Pastry: Routing TablePastry: Routing Table

• rows with 2b-1 entries each
– row i: hold IDs of nodes whose ID share an i-digit prefix with node
– column j: digit(i+1) = j
– Contains topologically closest node that meets these criteria

• Example: b=2, Node-ID = 32101

3210332102––321004

321313212132110––3

3230132212––320122

33123––31230303311

––2222213320012300

32 10i j

Digit at 
position i+1

Shared prefix 
length with 
Node-ID

Topologically closest 
node with prefix length i
and digit(i+1)=j

Possible node: 33xyz
33123 is topologically 
closest node

⎡ ⎤Nb2log

These entries match 
node 32101’s ID
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Pastry: Routing InformationPastry: Routing Information

• Leaf set
– contains numerically closest nodes

(l/2 smaller and l/2 larger keys)

– fixed maximum size

– similar to Chord's succ/pred list

– for routing and recovery from 
node departures

• Neighbor set
– contains nearby nodes

– fixed maximum size

– scalar proximity metric assumed to be available

• e.g., IP hops, latency

– irrelevant for routing

– 'cache' of nearby candidates for routing table

32120321233202232012

32121321103202332100

higher Node-IDsSmaller  Node-IDs

32120321233202232012

32121321103202332100

higher Node-IDsSmaller  Node-IDs

Node-ID = 32101
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Pastry Routing AlgorithmPastry Routing Algorithm

• Routing of packet with destination K at node N:

1. Is K in Leaf Set, route packet directly to that node

2. If not, determine common prefix (N, K)

3. Search entry T in routing table with prefix (T, K) > prefix (N, K), 

and route packet to T

4. If not possible, search node T with longest prefix (T, K) out of merged set 

of routing table, leaf set, and neighborhood set and route to T

This was shown to be a rare case

– Access to routing table O(1), since row and column are known

– Entry might be empty if corresponding node is unknown
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Pastry: Routing ProcedurePastry: Routing Procedure

• Long-range routing
– if key k not covered by leaf set:
– forward query for k to

• node with longer prefix match than self or
• same prefix length but numerically closer

Node 103220

21032101032?x:

310230310120310022110?xxx:

1033022103112103?xx:

10322?:

1?xxxx:

?xxxxx:

0

1320121201321100030

3122012013031031120

leaf set 103330103302103210103123

lookup(102332)

→ 102303
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Pastry: Routing ProcedurePastry: Routing Procedure

• Close-range routing
– k covered by nodes IDs in leaf set
– pick leaf node nL numerically closest to k
– nL must be responsible for k → last step in routing procedure
– return nL as answer to query for k

Node 103220

21032101032?x:

310230310120310022110?xxx:

1033022103112103?xx:

10322?:

1?xxxx:

?xxxxx:

0

1320121201321100030

3122012013031031120

leaf set 103330103302103210103123

lookup(103312)

103302
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AnotherAnother exampleexample

3210332102––321004

321313212132110––3

3230132212––320122

33123––31230303311

––2222214320012340

32 10i j

Node-ID = 32101

Key = 32200
Common prefix:
32101
32200
--------
322--

Common prefix:
32101
33122
--------
33---

Key = 33122Key = 01200
Common prefix:
32101
01200
--------
0----

Key = 32102

Node is in 
range of 
Leaf-Set

32120321233202232012

32121321103202332100

> Node-ID< Node-ID

32120321233202232012

32121321103202332100

> Node-ID< Node-IDRouting table

Leaf set
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Arrival of a new nodeArrival of a new node
• Node X wants to join 

Pastry DHT
– Determine NodeID of X 

12333 (hash of IP address)
– Initialize tables at node X
– Send JOIN message to key 12333 via 

topologically nearest Pastry node
– Node currently in charge of this key: z

JOIN X

X = 12333
A4 = Z = 12332

A1 = 13231

A2 = 12222

A3 = 12311

A0 = 23231

> Node-ID< Node-ID

4

3

2

1

0

32 10i \ j
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Arrival of a new node /2Arrival of a new node /2
• Node X wants to join 

Pastry DHT
– Node X copies Neighbor-Set 

from node A0 

> Node-ID< Node-ID

11213210211100100100

32123012131230032022

4

3

2

1

0

32 10i \ j

X = 12333
A4 = Z = 12332

A1 = 13231

A2 = 12222

A3 = 12311

A0 = 23231

Copy 
Neighbor-Set
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Arrival of a new node /3Arrival of a new node /3
• Node X wants to join 

Pastry DHT
– Node A0 routes message 

to node Z
– Each node sends row in 

routing table to X
– Here A0

JOIN X

X = 12333
A4 = Z = 12332

A1 = 13231

A2 = 12222

A3 = 12311

A0 = 23231

> Node-ID< Node-ID

4

3

2

1

3233113231022310

32 10i \ j

11213210211100100100

32123012131230032022

11213210211100100100

32123012131230032022
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Arrival of a new node /4Arrival of a new node /4
• Node X wants to join 

Pastry DHT
– Node A0 routes message 

to node Z
– Each node sends row in 

routing table to X
– Here A1

JOIN X

X = 12333
A4 = Z = 12332

A1 = 13231

A2 = 12222

A3 = 12311

A0 = 23231

> Node-ID< Node-ID

4

3

2

1222211312101221

3233113231022310

32 10i \ j

11213210211100100100

32123012131230032022

11213210211100100100

32123012131230032022
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Arrival of a new node /5Arrival of a new node /5
• Node X wants to join 

Pastry DHT
– Node A0 routes message 

to node Z
– Each node sends row in 

routing table to X
– Here A2

JOIN X
X = 12333

A4 = Z = 12332

A1 = 13231

A2 = 12222

A3 = 12311

A0 = 23231

> Node-ID< Node-ID

4

3

1231112111120332

1222211312101221

3233113231022310

32 10i \ j

11213210211100100100

32123012131230032022

11213210211100100100

32123012131230032022
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Arrival of a new node /6Arrival of a new node /6
• Node X wants to join 

Pastry DHT
– Node A0 routes message 

to node Z
– Each node sends row in 

routing table to X
– Here A3

X = 12333
A4 = Z = 12332

A1 = 13231

A2 = 12222

A3 = 12311

A0 = 23231

> Node-ID< Node-ID

4

1233212320123013

1231112111120332

1222211312101221

3233113231022310

32 10i \ j

JOIN X

11213210211100100100

32123012131230032022

11213210211100100100

32123012131230032022
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Arrival of a new node /7Arrival of a new node /7
• Node X wants to join 

Pastry DHT
– Node A0 routes message 

to node Z
– Each node sends row in 

routing table to X
– Here A4

JOIN X

X = 12333
A4 = Z = 12332

A1 = 13231

A2 = 12222

A3 = 12311

A0 = 23231

> Node-ID< Node-ID

1233312331123304

1233212320123013

1231112111120332

1222211312101221

3233113231022310

32 10i \ j

11213210211100100100

32123012131230032022

11213210211100100100

32123012131230032022
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Arrival of a new node /8Arrival of a new node /8
• Node X wants to join 

Pastry DHT
– Node Z copies its Leaf-Set 

to Node X

Copy Leaf-Set 
to X

X = 12333
A4 = Z = 12332

A1 = 13231

A2 = 12222

A3 = 12311

A0 = 23231

13003130011233012331

13000123331232212311

> Node-ID< Node-ID

12333-12331123304

1233212320-123013

12311-12111120332

-1222211312101221

32331-13231022310

32 10i \ j

11213210211100100100

32123012131230032022

11213210211100100100

32123012131230032022
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Arrival of a new node /9Arrival of a new node /9
• Some entries are doubtable

– Entries pointing to “own-ID-
positions” not required

• Some are missing
– Take the node-IDs just visited

X = 12333
A4 = Z = 12332

A1 = 13231

A2 = 12222

A3 = 12311

A0 = 23231

13003130011233012331

13000123331232212311

> Node-ID< Node-ID

12333-12331123304

1233212320-123013

12311-12111120332

-1222211312101221

32331-13231022310

32 10i \ j

--

--

--

--

--

23231
13231

12222

12311

12332

11213210211100100100

32123012131230032022

11213210211100100100

32123012131230032022
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Arrival of a new node /10Arrival of a new node /10
• Node X wants to join 

Pastry DHT
– Node x sends its routing 

table to each neighbor

JOIN X

X = 12333
A4 = Z = 12332

A1 = 13231

A2 = 12222

A3 = 12311

A0 = 23231

13003130011233012331

13000123331232212311

> Node-ID< Node-ID

-12331123304

12320-123013

-12111120332

1312111312101221

32331-022310

32 10i \ j

23231
13231

12222

12311

12332

11213210211100100100

32123012131230032022

11213210211100100100

32123012131230032022
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Arrival of a new node /11Arrival of a new node /11

• Efficiency of initialization procedure 
– Quality of routing table (b=4, l=16, 5k nodes)

SL: transfer only the ith routing table row of Ai

WT: transfer of ith routing table row of Ai as well as analysis of leaf and neighbor set

WTF: same as  WT, but also query the newly discovered nodes from WT and analyse data
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Failure of Pastry NodesFailure of Pastry Nodes

• Detection of failure

– Periodic verification of nodes in Leaf Set

• “Are you alive” also checks capability of neighbor

– Route query fails

• Replacement of corrupted entries

– Leaf-Set

• Choose alternative node from Leaf (L) ∪ Leaf (±|L|/2)

• Ask these nodes for their Leaf Sets

– Entry Rx y in routing table failed:

• Ask neighbor node Rx i (i≠y) of same row for route to Rx y

• If not successful, test entry Rx++ i in next row 
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Performance EvaluationPerformance Evaluation

• Routing Performance
– Number of Pastry hops (b=4, 

l=16, 2·105 queries

– O(log N) for number of hops
in the overlay

– Overhead of overlay 
(in comparison to route 
between two node in the IP network)

– But: 
Routing table has only O(log N) 
entries instead of O(N)
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LocalityLocality

• In routing, if multiple peers match, the next hop is chosen based on 
some metric
– Typically RTT

• This is done based on local information
– May not generally route in the right direction

• Expected latency grows with
every hop
– Last hops most expensive; but:

the closer we get to the destination,
the more likely it is that the leaf set
can be used
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Summary PastrySummary Pastry

• Complexity:
– O(log N) hops to destination 

• Often even better through Leaf- and Neighbor-Set: 

– O(log N) storage overhead per node

• Good support of locality
– Explicit search of close nodes (following some metric)

• Used in many applications
– PAST (file system), Squirrel (Web-Cache), …
– Many publications available, open source implementation: FreePastry

)(log
2

NO b
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TapestryTapestry

• Tapestry developed at UC Berkeley
– Different group from CAN developers

• Tapestry developed in 2000, but published in 2004
– Originally only as technical report, 2004 as journal article

• Many follow-up projects on Tapestry
– Example: OceanStore

• Like Pastry, based on work by Plaxton et al.

• Pastry was developed at Microsoft Research and Rice University
– Difference between Pastry and Tapestry minimal
– Tapestry and Pastry add dynamics and fault tolerance to Plaxton network
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Tapestry: Routing MeshTapestry: Routing Mesh

• (Partial) routing mesh for a single node 4227
– Neighbors on higher levels match more digits

4228 27AB

6F43

43C9
51E5 4242

1D76

44AF

4227

L1

L1L1

L1
L4

L2

L2
L3
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Tapestry: Neighbor Map for 4227Tapestry: Neighbor Map for 4227

42284

42A23

44AF43C92

6F4351E527AB1D761

A8654321Level

• There are actually 16 columns in the map (base 16)   
• Normally more entries would be filled (limited by a constant)
• Tapestry has multiple neighbor maps
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Tapestry: Routing ExampleTapestry: Routing Example

• Route message from 5230 to 42AD
• Always route to node closer to target

– At nth hop, look at n+1th level in neighbor map --> “always” one digit more
• Not all nodes and links are shown

42AD

5230
400F

4227 4629

42A2

AC78

42A7

4112

4211

42E0

42A9
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Tapestry: PropertiesTapestry: Properties

• Node responsible for objects which have the same ID
– Unlikely to find such node for every object
– Node also responsible for “nearby” objects (surrogate routing, see below)

• Object publishing
– Responsible nodes only store pointers

• Multiple copies of object possible
• Each copy must publish itself

– Pointers cached along the publish path
– Queries routed towards responsible node
– Queries “often” hit cached pointers

• Queries for same object go (soon) to same nodes

• Note: Tapestry focuses on storing objects
– Chord and CAN focus on values, but in practice no difference
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Tapestry: Publishing ExampleTapestry: Publishing Example

• Two copies of object “DOC” with ID 4377 created at AA93 and 4228
• AA93 and 4228 publish object DOC, messages routed to 4377

– Publish messages create location pointers on the way
• Any subsequent query can use location pointers

4377

AA93

4228

43FE

437A

4361

4664 4B4F

E791

4A6D

57EC

DOC

DOC

Routing path
Publish path

Location pointer
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Tapestry: Querying ExampleTapestry: Querying Example

• Requests initially route towards 4377
• When they encounter the publish path, use location pointers to find object
• Often, no need to go to responsible node
• Downside: Must keep location pointers up-to-date

4377

AA93

4228

43FE

437A

4361

4664 4B4F

E791

4A6D

57EC

DOC

DOC

Routing path

Location pointer
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Tapestry: Making It WorkTapestry: Making It Work

• Previous examples show a Plaxton network
– Requires global knowledge at creation time
– No fault tolerance, no dynamics

• Tapestry adds fault tolerance and dynamics
– Nodes join and leave the network
– Nodes may crash
– Global knowledge is impossible to achieve

• Tapestry picks closest nodes for neighbor table
– Closest in IP network sense (= shortest RTT)
– Network distance (usually) transitive

• If A is close to B, then B is also close to A
– Idea: Gives best performance
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Tapestry: FaultTapestry: Fault--Tolerant RoutingTolerant Routing

• Tapestry keeps mesh connected with keep-alives
– Both TCP timeouts and UDP “hello” messages
– Requires extra state information at each node

• Neighbor table has backup neighbors
– For each entry, Tapestry keeps 2 backup neighbors
– If primary fails, use secondary

• Works well for uncorrelated failures

• When node notices a failed node, it marks it as invalid
– Most link/connection failures short-lived
– Second chance period (e.g., day) during which failed node can come back 

and old route is valid again
– If node does not come back, one backup neighbor is promoted and a new 

backup is chosen
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Tapestry: FaultTapestry: Fault--Tolerant LocationTolerant Location

• Responsible node is a single point of failure

• Solution: Assign multiple roots per object
– Add “salt” to object name and hash as usual
– Salt = globally constant sequence of values (e.g., 1, 2, 3, …)

• Same idea as CAN’s multiple realities

• This process makes data more available, even if the network is partitioned
– With s roots, availability is P ≈ 1 - (1/2)s

– Depends on partition

• These two mechanisms “guarantee” fault-tolerance
– In most cases :-)
– Problem: If the only out-going link fails…
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Tapestry: Surrogate RoutingTapestry: Surrogate Routing

• Responsible node is node with same ID as object
– Such a node is unlikely to exist

• Solution: surrogate routing

• What happens when there is no matching entry in neighbor map for
forwarding a message?
– Node (deterministically) picks next entry in neighbor map

• If that one also doesn’t exist, next of next … and so on

• Idea: If “missing links” are deterministically picked, any message for that ID 
will end up at same node
– This node is the surrogate

• If new nodes join, surrogate may change
– New node is neighbor of surrogate 
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Surrogate Surrogate RoutingRouting ExampleExample

Peer 2716 searches for 4666:
2716

4233

4899

4860

Level 1, current digit j =4

Level 2, j=6 doesn‘t exist, next link: j=8

Level 3, j=6

Node 4860 doesn‘t have any level 4 neighbors => done
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Tapestry: PerformanceTapestry: Performance

• Messages routed in O(logb N) hops
– At each step, we resolve one more digit in ID
– N is the size of the namespace (e.g, SHA-1 = 40 digits)
– Surrogate routing adds a bit to this, but not significantly

• State required at a node is O(b logb N)
– Tapestry has c backup links per neighbor, O(cb logb N)
– Additionally, same number of backpointers
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Complexity comparison of Complexity comparison of DHTsDHTs so farso far

??O(log² N)?
Leave of node

O(log N)O(log N)O(log² N)Join of node

O(log N)O(log N)O(log N)
Pathlength
(Routing)

O(log N)O(log N)O(log N)O(D)
States per 
node

TapestryPastryChordCAN

)(
1
DDNO

)(
1

4
DNO D
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KademliaKademlia

• From New York University
– Used in eMule, Overnet, Azureus, …

• Overlay: 
– Tree

– Node Position: 

• shortest unique prefix

– Service:

• Locate closest nodes to a desired ID

• Routing:
– “based on XOR metric”

– keep k nodes for each sub-tree which 
shares the root as the sub-trees where p resides.

• Share the prefix with p

• Magnitude of distance (XOR)

• k: replication parameter (e.g. 20)
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KademliaKademlia –– Hashing and distanceHashing and distance

• Routing idea similar to Plaxton’s mesh: improve closeness one bit at a time
• Nodes and Keys are mapped to m-bit binary strings
• Distance between two identifiers: the XOR string, as a binary number

• If x and y agree in the first i digits and disagree in the (i+1)
then 2i ≤ d(x,y) ≤ 2i+1-1

x = 0 1 0 1 1 0
y = 0 1 1 0 1 1

x y = 0 0 1 1 0 1
d(x,y) = 13

x = 0 1 0 1 1 0
y = 0 1 1 1 1 0

x y = 0 0 1 0 0 0
d(x,y) = 8

x = 0 1 0 1 1 0
y = 0 1 1 0 0 1

x y = 0 0 1 1 1 1
d(x,y) = 15
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KademliaKademlia –– Routing tableRouting table

• Each node with ID x stores m k-buckets
– a k-bucket stores k nodes that are at distance [2i,2i+1-1]

• empty bucket if no nodes are known
– Continuous simple queries for values in k-buckets are used to refresh k-buckets

• full k-bucket: least-recently used node is removed

• Tables are updated when lookups are performed

• Due to XOR symmetry a node receives lookups from the nodes that are in its
own table

• Node Joins
– contact a participating node and insert it in the appropriate bucket
– perform a query for your own ID
– refresh all buckets
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KademliaKademlia –– LookupsLookups

• Process is iterative: 
– everything is controlled by the initiator node
– query in parallel the α nodes closest to the query ID

• Parallel search: fast lookup at the expense of increased traffic
– nodes return the k nodes closest to the query ID
– go back to step 1, and select the α nodes from the new set of nodes
– Terminate when you have the k closest nodes

• Key lookups are done in a similar fashion, but terminate when key is found
– the requesting node cashes the key locally

• Underlying invariant: 
– If there exists some node with ID within a specific range then k-bucket is not empty
– If the invariant is true, then the time is logarithmic
– we move one bit closer each time
– Due to refreshes the invariant holds with high probability
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KademliaKademlia vs. Chord and Pastryvs. Chord and Pastry

• Comparing with Chord
– Like Chord: achieves similar performance

• deterministic
• O(logN) contacts (routing table size)
• O(logN) steps for lookup service (?)
• Lower node join/leave cost

– Unlike Chord:
• Routing table: view of the network
• Flexible Routing Table

– Given a topology, there are more than one routing table
– Symmetric routing

• Comparing with Pastry
– Both have flexible routing table
– Better analysis properties
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