Uni Innsbruck Informatik - 1

Peer-to-Peer Systems

DHT examples, part 2

(Pastry, Tapestry and Kademlia)

Michael Welzl michael.welzl@uibk.ac.at

DPS NSG Team http://dps.uibk.ac.at/nsg
Institute of Computer Science
University of Innsbruck, Austria

Uni Innsbruck Informatik - 3

Pastry: Topology

« Identifier space:

2\-bit identifiers (typically: | = 128), wrap-around at 2! - 1 <> 0
- interpret identifiers to the base of 2° (typically: b = 4, base 16)
prefix-based tree topology

- leaves can be keys and node IDs

(key, value) pairs managed by numerically closest node

|=6: 6-bit identifiers
b=2: base 4 I key I node managed by

Uni Innsbruck Informatik - 5

Pastry: Routing Basics /2

« Routing in Pastry:

- In each routing step,
query is routed towards
“numerically” closest node

« That is, query is routed
to a node with a
one character longer
prefix (= b Bits)

> O(log,. N) routing steps
- If that is not possible:

« route towards node that is
numerically closer to ID

Destination:
(b=2)

Start

1. Hop
2. Hop
3. Hop
4. Hop
5. Hop

Destination:

012321

321321
!

012222
013331
012110

!
012300
!

012322

012321

Uni Innsbruck Informatik - 2

Plaxton routing

« Plaxton, Rajamaran and Richa: mechanism for efficient
dissemination of objects in a network, published in 1997
- Before P2P systems came about!

« Basic idea: prefix-oriented routing (fixed number of nodes assumed)
Object with ID A is stored at the node whose ID has the longest common
prefix with A

« If multiple such nodes exist, node with longst common suffix is chosen
Goal: uniform data dissemination

- Routing based on pointer list (object - node mapping) and
neigbor list (primary + secondary neighbors)

Generalization of routing on a hypercube

« Basis for well known DHTs Pastry, Tapestry (and follow-up projects)
- Method adapted to needs of P2P systems + simplified

>

Uni Innsbruck Informatik -

Pastry: Routing Basics

« Goal: find node responsible for k, e.g. 120
« Tree-based search for lookup(k)
- Traverse tree search structure top-down
« Prefix-based routing for lookup(k)
- Approximate tree search in distributed scenario
- Forward query to known node with longest prefix matching k

Uni Innsbruck Informatik - 6

Pastry: Routing Basics /3

« Example:
- Node-ID = 0221

- Base = 3 (ot power of 2, because it s easier to draw))

Uni Innsbruck Informatik - 7

Pastry: Routing Basics /4

« Data (key-value-pairs) are managed in numerically closest node
- keys = nodes: : :
« Linking between Prefix-areas:

0002 0002, 01** 0110
- Nodes within a certain prefix area know IP addresses of each other

- Each node in a prefix area knows one or more nodes from another prefix
area

« From which prefix areas should a node know other nodes?
- Links to shorter-prefix node areas on each prefix level

Uni Innsbruck Informatik - 8

Pastry: Routing Basics /5

« Example:
- Node in area 222* knows nodes from prefix areas
220%, 221* & 20**, 21** & O***, 1***
- Logarithmic number of links:
« For prefix-length p: (base-1) links to other nodes with prefix length p,
but with a different digit at position p

« /b different prefix-lengths: | ~ log(N)

Uni Innsbruck Informatik - 9

Pastry: Routing Information

« Challenges
- Efficiently distribute search tree among nodes
- Honor network proximity

« Pastry routing data per node
- Routing table
« Long-distance links to other nodes

- Leaf set
« Numerically close nodes

- Neighborhood set
« Close nodes based on proximity metric (typically ping latency)

Uni Innsbruck Informatik - 10

Pastry: Routing Table

« Routing table
- Long distance links to other prefix realms
- /b rows: one per prefix length
- 21 columns: one per digit different from local node ID

- Routing table for node 120:

0xx 3xx

Uni Innsbruck Informatik - 11

Pastry: Routing Table

. |—Iog 2 N—l rows with 2P-1 entries each
row i: hold IDs of nodes whose ID share an i-digit prefix with node
- column j: digit(i+1) = j
- Contains topologically closest node that meets these criteria
* Example: b=2, Node-ID = 32101

These entries match
node 32101's ID

Digit at
position i+1
i j 0 1 2 3
T closest
0 01230 13320 2 - node with prefix length i
—— 1 30331 31230 - 3 —— and digiti+t)=j |
Shared prefix N -
length with 2 32012 - 32212 32301 Possible node: 33xyz
Node-ID 3 _ 32110 2121 o 33123 is topologically
closest node
4 32100 - 32102 32103

Uni Innsbruck Informatik - 12

Pastry: Routing Information

* Leaf set Node-ID = 32101
- contains numerically closest nodes
(L/2 smaller and 1/2 larger keys) Smaller Node-IDs higher Node-IDs

- fixed maximum size

32100 32023 32110 32121
- similar to Chord's succ/pred list

- for routing and recovery from 32012 32022 32123 32120
node departures

« Neighbor set
- contains nearby nodes
- fixed maximum size
- scalar proximity metric assumed to be available
« e.g., IP hops, latency
- irrelevant for routing
- ‘cache’ of nearby candidates for routing table

Uni Innsbruck Informatik - 13

Pastry Routing Algorithm

« Routing of packet with destination K at node N:
1. Is K in Leaf Set, route packet directly to that node
2. If not, determine common prefix (N, K)
3. Search entry T in routing table with prefix (T, K) > prefix (N, K),
and route packet to T

4. If not possible, search node T with longest prefix (T, K) out of merged set
of routing table, leaf set, and neighborhood set and route to T

> This was shown to be a rare case

- Access to routing table O(1), since row and column are known

- Entry might be empty if corresponding node is unknown

Uni Innsbruck Informatik - 14
Pastry: Routing Procedure

« Long-range routing
- if key k not covered by leaf set:
- forward query for k to
« node with longer prefix match than self or
« same prefix length but numerically closer

Node 103220
031120

201303

25000

312201 lookup(102332)
132012 —, 102303

3

110003

125000¢:

10700¢ | 100221 101203

1037xx: 103112 2 103302
10322« 103210 2
103227 0

Uni Innsbruck Informatik - 15
Pastry: Routing Procedure

« Close-range routing
- k covered by nodes IDs in leaf set
- pick leaf node n_numerically closest to k
- n_ must be responsible for k — last step in routing procedure
- return n_as answer to query for k

Node 103220

2000 | 031120 1 201303 | 312201
1250006 0 110003 | 120132 | 132012 103302

107200¢ | 100221 101203 | 102303 3

1037xx: 103112 2 103302

10322« 103210 2

103222 0

[teafset] t0st2s] 103210 - 103330 |

Uni Innsbruck Informatik - 16

Another example

[Key=01200] [Key=32200] [Key=33122]
Common prefix: Common prefix: Common prefix:
32101 32101 32101

01200 32200 33122 Key = 32102

= 322-- Node is in
Node-ID = 32101 /2 range of
i 3 0 X 1 T 7] 3~ Leaf-Set
o “q o 74320 22 =
—
1+ 31 31230 = s)
2 012 - an)
—"
3 - 32110 3211 32131
4 32100 - 32102 32103
Routing table < Node-ID > Node-ID
32100 | 32023 32110 [32121
Leaf set | 32012 | s2022 32123 | 32120

Uni Innsbruck Informatik - 17

Arrival of a new node

« Node X wants to join [| | |

Pastry DHT i\ 0 1 2 3

- Determine NodelD of X 0

> 12333 (hash of IP address) 1

Initialize tables at node X

2

- Send JOIN message to key 12333 via 3

topologically nearest Pastry node 4

- Node currently in charge of this key: z
< Node-ID > Node-ID
A, =12222 } }
X =12333 @
O A,=Z7=12332
JOIN X o)

(@
Ay =23231

O O
A, = 12311 A, = 13231

Uni Innsbruck Informatik - 18

Arrival of a new node /2

[3202 T 12300 [on2i3 | 523
|

. Node X wants to join | 00100 11001 ‘ 21021 ‘ 11213
Pastry DHT i\j 0 1 2 3
- Node X copies Neighbor-Set 0

from node AO 1

< Node-ID > Node-ID

A, = 12222 ‘ ‘
o \ \

Copy A,=7=12332
Neighbor-Set O

@
Ay =23231

O O
A, = 12311 A, = 13231

Arrival of a new node /3

« Node X wants to join
Pastry DHT
- Node AO routes message
to node Z
- Each node sends row in
routing table to X
- Here AO

A, =12222
O

@
Ao = 23231

A, = 12311

Uni Innsbruck Informatik - 19

| 32022 ‘ 12300 ‘ 01213 ‘ 32123
| 00100 ‘ 11001 ‘ 21021 11213
ivj 0 1 2 3
0 02231 13231 32331
1
2
3
4
< Node-1D > Node-1D
[[
\ \
4 =Z=12332

A, =13231

Arrival of a new node /5

Uni Innsbruck Informatik - 21

| 32022 ‘ 12300 ‘ 01213 ‘ 32123 |
. Node X wants to join | 00100 ‘ 11001 ‘ 21021 ‘ 11213 |
Pastry DHT i 0 1 2 3
- Node AO routes message 0 02231 13231 32331
to node Z
. 1 10122 11312 12222
- Each node sends row in
rOUting table to X 2 12033 12111 12311
- Here A2 g
4
< Node-ID > Node-1D
A, =12222 ‘ ‘
O
O
Ao = 23231
O
A, = 13231
Uni Innsbruck Informatik - 23
Arrival of a new node /7
| 32022 ‘ 12300 ‘ 01213 ‘ 32123
. Node X wants to join | 00100 ‘ 11001 ‘ 21021 ‘ 11213
Pastry DHT ivj 0 1 2 3
- Node AO routes message 0 02231 13231 32331
to node Z 1 10122 11312 12222
- Each node sends row in 2 AR o
routing table to X
- Here A4 3 12301 12320 12332
4 12330 12331 12333
< Node-ID > Node-ID
A, =12222 ‘ ‘
O \ \
O
Ao = 23231

O
12311

O
A, =13231

Arrival of a new node /4

Uni Innsbruck Informatik - 20

| 32022 ‘ 12300 ‘ 01213 ‘ 32123
. Node X wants to join | 00100 ‘ 11001 ‘ 21021 ‘ 11213
Pastry DHT inj 0 1 2 3
- Node AO routes message 0 02231 13231 32331
to node Z
. 1 10122 11312 12222
- Each node sends row in
routing table to X 2
- Here A1 g
4
< Node-1D > Node-1D
A, =12222 ‘ ‘
o \ \
= Z=12332
O
Ap = 23231 JOIN X
As=12311 A, = 13231
Uni Innsbruck Informatik - 22
Arrival of a new node /6
| 32022 ‘ 12300 ‘ 01213 ‘ 32123 |
« Node X wants to join [ooreo | oo [2wenr [rass |
Pastry DHT inj 0 1 2 3
- Node AO routes message 0 02231 13231 32331
to node Z
. 1 10122 11312 12222
- Each node sends row in
rOUting table to X 2 12033 12111 12311
- Here A3 3 12301 12320 12332
4
< Node-ID > Node-1D
A, =12222 ‘ ‘
A, = 23231
As=12311 A, =13231
Uni Innsbruck Informatik - 24
Arrival of a new node /8
| 32022 ‘ 12300 ‘ 01213 ‘ 32123
. Node X wants to join | 00100 ‘ 11001 ‘ 21021 ‘ 11213
Pastry DHT ivj 0 1 2 3
- Node Z copies its Leaf-Set 0 02231 13231 32331
to Node X 1 10122 11312 12222
2 12033 12111 12311
3 12301 12320 12332
4 12330 12331 12333
< Node-ID > Node-ID
12311 12322 12333 13000
o = 12222 ‘ ‘
X = 12333 12331 ‘ 12330 13001 ‘ 13003

C
Ay =23231

Z=12332

Copy Leaf-Set
to X

@)
A, =13231

Uni Innsbruck Informatik - 25
Arrival of a new node /9
| 32022 ‘ 12300 ‘ 01213 ‘ 32123
< Some entries are doubtable [ooo [1ioor | awemr | 11203
- Entries pointing to “own-ID- i\ 0 1 2 3
positions” not required 0 02231 - 23231 | 32331
1 10122 11312 = 13231
+ Some are missing 2 12033 | 12111 | 12222
- Take the node-IDs just visited 3 01 | 12311 | 1230 -
4 12330 12331 | 12332
< Node-ID > Node-ID
12311 12322 12333 13000
A, = 12222 ‘ ‘
. 12331 ‘ 12330 13001 ‘ 13003

Z=12332

C
Ay =23231

O
Ay =12311 A, = 13231

Uni Innsbruck Informatik - 26

Arrival of a new node /10

[32022 T 12300 T 01213 | s2r2s
« Node X wants to join [ooto0 | w1001 | 21021 | 11213
Pastry DHT i\j 0 1 2 3
- Node x sends its routing 0 02231 23231 | 32331
table to each neighbor] el 13231
2 12033 12111 | 12222
g 12301 | 12311 12320
4 12330 12331 | 12332
< Node-ID > Node-ID
A= 12222 EXERE 1233 | 13000
X = 12333 2331 | 12330 13001 | 13003
A,=Z=12332

JOIN X
Ay =23231

As=12311 A, = 13231

Uni Innsbruck Informatik - 27

Arrival of a new node /11

« Efficiency of initialization procedure
- Quality of routing table (b=4, =16, 5k nodes)

wrowT s

oW owr om

SL: transfer only the i*" routing table row of A,

WT: transfer of i routing table row of A, as well as analysis of leaf and neighbor set
WTF: same as WT, but also query the newly discovered nodes from WT and analyse data

Uni Innsbruck Informatik - 28

Failure of Pastry Nodes

« Detection of failure
- Periodic verification of nodes in Leaf Set

« “Are you alive” also checks capability of neighbor
- Route query fails

« Replacement of corrupted entries
- Leaf-Set
« Choose alternative node from Leaf (L) U Leaf (+|L|/2)
« Ask these nodes for their Leaf Sets
- Entry R, in routing table failed:
+ Ask neighbor node R, ; (i#y) of same row for route to R,

« If not successful, test entry R .. ; in next row

Uni Innsbruck Informatik - 29

Performance Evaluation

as

Routing Performance !

- Number of Pastry hops (b=4,
=16, 2-10° queries
O(log N) for number of hops |
in the overlay os |
o o000 o000
Humaas of nodes.

4
5
3
28
z
s

——Fasy
-—Logh)

Average numser ol heps

Overhead of overlay L —— i}
(in comparison to route 13 g ¥ e
between two node in the IP network)
- But:

Routing table has only O(log N) i
entries instead of O(N) '

= Cormgiata rousing ke

0000
Wt f rades

Uni Innsbruck Informatik - 30

Locality

In routing, if multiple peers match, the next hop is chosen based on
some metric
- Typically RTT

This is done based on local information
- May not generally route in the right direction

Expected latency grows with
every hop
- Last hops most expensive; but:
the closer we get to the destination,
the more likely it is that the leaf set
can be used

Uni Innsbruck Informatik - 31

Summary Pastry

« Complexity:
- O(log N) hops to destination
« Often even better through Leaf- and Neighbor-Set: O(log,, N)
- O(log N) storage overhead per node

« Good support of locality
- Explicit search of close nodes (following some metric)

« Used in many applications
- PAST (file system), Squirrel (Web-Cache), ...
- Many publications available, open source implementation: FreePastry

Uni Innsbruck Informatik - 32

Tapestry
« Tapestry developed at UC Berkeley
- Different group from CAN developers

« Tapestry developed in 2000, but published in 2004
- Originally only as technical report, 2004 as journal article

« Many follow-up projects on Tapestry
- Example: OceanStore

« Like Pastry, based on work by Plaxton et al.
« Pastry was developed at Microsoft Research and Rice University

- Difference between Pastry and Tapestry minimal
- Tapestry and Pastry add dynamics and fault tolerance to Plaxton network

Uni Innsbruck Informatik - 33

Tapestry: Routing Mesh

« (Partial) routing mesh for a single node 4227
- Neighbors on higher levels match more digits

Uni Innsbruck Informatik - 34

Tapestry: Neighbor Map for 4227

Level 1 2 3 4 5 6 8 A
1 1D76 | 27AB 51E5 | 6F43
2 43C9 | 44AF
3 4282
4 4228

o There are actually 16 columns in the map (base 16)
« Normally more entries would be filled (limited by a constant)
« Tapestry has multiple neighbor maps

Uni Innsbruck Informatik - 35

Tapestry: Routing Example

-

« Route message from 5230 to 42AD
« Always route to node closer to target

- At nt hop, look at n+1t level in neighbor map --> "always” one digit more
« Not all nodes and links are shown

Uni Innsbruck Informatik - 36
Tapestry: Properties

« Node responsible for objects which have the same ID
- Unlikely to find such node for every object
- Node also responsible for “nearby” objects (surrogate routing, see below)

« Object publishing
- Responsible nodes only store pointers
« Multiple copies of object possible
« Each copy must publish itself
- Pointers cached along the publish path
- Queries routed towards responsible node
- Queries “often” hit cached pointers
« Queries for same object go (soon) to same nodes

« Note: Tapestry focuses on storing objects
- Chord and CAN focus on values, but in practice no difference

Uni Innsbruck Informatik - 37

Tapestry: Publishing Example

Routing path ——»
Publish path s

Location pointer -

« Two copies of object “DOC” with ID 4377 created at AA93 and 4228
« AA93 and 4228 publish object DOC, messages routed to 4377

- Publish messages create location pointers on the way
« Any subsequent query can use location pointers

Uni Innsbruck Informatik - 38

Tapestry: Querying Example

Routing path ~ ——»

Location pointer - -

Requests initially route towards 4377

When they encounter the publish path, use location pointers to find object
Often, no need to go to responsible node

Downside: Must keep location pointers up-to-date

Uni Innsbruck Informatik - 39

Tapestry: Making It Work

« Previous examples show a Plaxton network
- Requires global knowledge at creation time
- No fault tolerance, no dynamics

« Tapestry adds fault tolerance and dynamics
- Nodes join and leave the network
- Nodes may crash
- Global knowledge is impossible to achieve

« Tapestry picks closest nodes for neighbor table
- Closest in IP network sense (= shortest RTT)
- Network distance (usually) transitive
« If A'is close to B, then B is also close to A
- Idea: Gives best performance

Uni Innsbruck Informatik - 40

Tapestry: Fault-Tolerant Routing

« Tapestry keeps mesh connected with keep-alives
- Both TCP timeouts and UDP “hello” messages
- Requires extra state information at each node

« Neighbor table has backup neighbors
- For each entry, Tapestry keeps 2 backup neighbors
- If primary fails, use secondary
« Works well for uncorrelated failures

« When node notices a failed node, it marks it as invalid

Most link/connection failures short-lived

- Second chance period (e.g., day) during which failed node can come back
and old route is valid again

- If node does not come back, one backup neighbor is promoted and a new
backup is chosen

Uni Innsbruck Informatik - 41

Tapestry: Fault-Tolerant Location

.

Responsible node is a single point of failure

Solution: Assign multiple roots per object
- Add “salt” to object name and hash as usual
- Salt = globally constant sequence of values (e.g., 1, 2, 3, ...)

Same idea as CAN’s multiple realities

.

This process makes data more available, even if the network is partitioned
- With s roots, availability is P = 1 - (1/2)°
- Depends on partition

.

These two mechanisms “guarantee” fault-tolerance
- In most cases :-)
- Problem: If the only out-going link fails...

Uni Innsbruck Informatik - 42

Tapestry: Surrogate Routing

Responsible node is node with same ID as object
- Such a node is unlikely to exist

Solution: surrogate routing

What happens when there is no matching entry in neighbor map for
forwarding a message?
- Node (deterministically) picks next entry in neighbor map
« If that one also doesn’t exist, next of next ... and so on

Idea: If “missing links” are deterministically picked, any message for that ID
will end up at same node
- This node is the surrogate

If new nodes join, surrogate may change
- New node is neighbor of surrogate

Uni Innsbruck Informatik - 43

Surrogate Routing Example

@ Peer 2716 searches for 4666:

Level 1, current digit j =4

Level 2, j=6 doesn't exist, next link: j=8
Level 3, j=6

4899

4860 Node 4860 doesn't have any level 4 neighbors => done

Uni Innsbruck Informatik - 44

Tapestry: Performance

« Messages routed in O(log, N) hops
- At each step, we resolve one more digit in ID
- N is the size of the namespace (e.g, SHA-1 = 40 digits)
- Surrogate routing adds a bit to this, but not significantly

« State required at a node is O(b log, N)
- Tapestry has ¢ backup links per neighbor, O(cb log, N)
- Additionally, same number of backpointers

Uni Innsbruck Informatik - 45

Complexity comparison of DHTSs so far

CAN Chord Pastry Tapestry
States per
node P o(D) 0O(log N) 0O(log N) 0O(log N)
Pathlength L
(Roun.ngg) O(2N®) | o(logN) O(log N) 0O(log N)
Join of node O(DN?) | o(logz N) 0(log N) O(log N)
Leave of node 2 o(log? N) 2 »

Uni Innsbruck Informatik - 46

Kademlia

« From New York University
- Used in eMule, Overnet, Azureus, ...

« Overlay:
- Tree
- Node Position:
« shortest unique prefix
- Service:
« Locate closest nodes to a desired ID
« Routing:
- "based on XOR metric”
- keep k nodes for each sub-tree which
shares the root as the sub-trees where p resides.
» Share the prefix with p
+ Magnitude of distance (XOR)
« k: replication parameter (e.g. 20)

Uni Innsbruck Informatik - 47

Kademlia - Hashing and distance

Routing idea similar to Plaxton’s mesh: improve closeness one bit at a time
Nodes and Keys are mapped to m-bit binary strings
Distance between two identifiers: the XOR string, as a binary number
x=010110
y=011011
x®y=001101
d(x,y) =13

If x and y agree in the first i digits and disagree in the (i+1)
then 27 < d(x,y) < 2*1-1

x=010110 x=010110
y=011110 y=011001
x®y=001000 x®y=001111

d(x,y) =8 d(x,y) =15

Uni Innsbruck Informatik - 48

Kademlia - Routing table

« Each node with ID x stores m k-buckets
- ak-bucket stores k nodes that are at distance [2/,21*1-1]
« empty bucket if no nodes are known
- Continuous simple queries for values in k-buckets are used to refresh k-buckets
« full k-bucket: least-recently used node is removed

Tables are updated when lookups are performed

Due to XOR symmetry a node receives lookups from the nodes that are in its
own table

Node Joins
- contact a participating node and insert it in the appropriate bucket
- perform a query for your own ID
- refresh all buckets

Uni Innsbruck Informatik - 49
Kademlia - Lookups

« Process is iterative:
- everything is controlled by the initiator node
- query in parallel the a nodes closest to the query ID
« Parallel search: fast lookup at the expense of increased traffic
- nodes return the k nodes closest to the query ID
- go back to step 1, and select the a nodes from the new set of nodes
- Terminate when you have the k closest nodes

« Key lookups are done in a similar fashion, but terminate when key is found
- the requesting node cashes the key locally

« Underlying invariant:
- If there exists some node with ID within a specific range then k-bucket is not empty
- If the invariant is true, then the time is logarithmic
- we move one bit closer each time
- Due to refreshes the invariant holds with high probability

Uni Innsbruck Informatik - 50

Kademlia vs. Chord and Pastry

« Comparing with Chord
- Like Chord: achieves similar performance
+ deterministic
+ O(logN) contacts (routing table size)
+ O(logN) steps for lookup service (?)
« Lower node join/leave cost
- Unlike Chord:
+ Routing table: view of the network
« Flexible Routing Table
- Given a topology, there are more than one routing table
- Symmetric routing

« Comparing with Pastry
- Both have flexible routing table
- Better analysis properties

Uni Innsbruck Informatik - 51

References / acknowledgments

« Slides from:
- Jussi Kangasharju
- Christian Schindelhauer
- Klaus Wehrle

