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Part 1: Introducing DHTsPart 1: Introducing DHTs
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Searching and AddressingSearching and Addressing

• Two basic ways to find objects:
1. Search for them
2. Address them using their unique name

• Both have pros and cons (see below)

• Most existing P2P networks built on searching, but some networks 
are based on addressing objects

• Difference between searching and addressing is fundamental
– Determines how network is constructed
– Determines how objects are placed
– Determines efficiency of object location

• Let’s compare searching and addressing
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Addressing Addressing vsvs. Searching. Searching

Addressing
• Pros:

– Each object uniquely identifiable
– Object location can be made 

efficient

• Cons:
– Need to know unique name
– Need to maintain structure required 

by addresses

Searching
• Pros:

– No need to know unique names
• More user friendly

• Cons:
– Hard to make efficient

• Can solve with money, see 
Google

– Need to compare actual objects to 
know if they are same

• “Addressing” networks find objects by addressing them with their unique 
name (cf. URLs in Web)

• “Searching” networks find objects by searching with keywords that match 
objects’s description (cf. Google)
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Addressing Addressing vsvs. Searching: Examples. Searching: Examples

Object names in DHT,
URNs

?
(Search components of URNs)

Logical name 
of object

N/A
Searching in P2P networks,

Standard Google search
Desktop searches

Content or 
metadata of 

object

URLs in Web

Searching in P2P networks,
Searching in filesystem

(Desktop searches)
(Search components of URL with Google?)

Physical name 
of object

AddressingSearching
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Searching, Addressing, and P2PSearching, Addressing, and P2P

• We can distinguish between two main P2P network types

Unstructured networks/systems
• Based on searching
• Unstructured does NOT mean complete lack of structure

– Network has graph structure, e.g., scale-free
• Network has structure, but peers are free to join anywhere and 

objects can be stored anywhere
• So far we have seen unstructured networks

Structured networks/systems
• Based on addressing
• Network structure determines where peers belong in the network 

and where objects are stored
• How to build structured networks?
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Overlay NetworkOverlay Network

• Overlay network means a virtual network on top of the underlying IP 
network

• Can have various forms, including regular ones (rings, stars, ..)
– Remember LANs? Logical token ring over physical token bus…

End host

IP Router

IP Link

Overlay
Link
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Interconnection networksInterconnection networks

• Mainly used for parallel computers: regular network structures with 
certain advantageous properties
– But also in other areas (e.g. for Networks On Chips, NoCs)

Source: http://www.gup.jku.at/thesis/diploma/christian_schaubschlaeger/
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NoCsNoCs

• Yes, people put (packet) networks on chips
these days…
– Reason: “design productivity gap“ (space grows

faster than our ability of using it)

• 2-dimensional grid topology common
– Easy to build
– Simple XY routing: from (3,3) to (2,4) means “one left, one down“

• Note: if (X,Y) can be mapped to an object, finding it in a Grid is easy!
– Strategies like hot potato routing can be applied

(route around congestion instead of congestion control if traffic is small)
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HypercubeHypercube

• Most prominent interconnection network for parallel systems

• K-dimensional hypercube: 2k nodes, k connections each

• Scales well: maximum latency in k-dimensional hypercube is log2N
(N = 2k)

• Addressing: Gray code
– K-bit addresses
– Distance in hops = 

“bit-distance“
(no. of unequal bits)

• Significant efforts were
made for mapping parallel
programs onto hypercubes

Source: http://www.gup.jku.at/thesis/diploma/christian_schaubschlaeger/
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Regular network structures and P2PRegular network structures and P2P

• Question: could structured interconnection networks be used to gain advantages 
in P2P systems?
– E.g. create a Hypercube overlay

• Answer:
– In principle yes, if we have a way to map node addresses to objects for finding them

(key must identifiy objects)

– But, no: interconnection networks typically designed for static topology
• E.g. Hypercube based multiprocessor machines: hardware that can be bought

– They must be adapted to the needs of P2P systems

• P2P file sharing systems need efficient functions for
– Joining the overlay
– Leaving the overlay
– Storing objects and finding objects (related to addressing)

• Typical solution: Distributed Hash Table (DHT)
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Distributed Hash Tables (DHTs)Distributed Hash Tables (DHTs)

• Communication overhead vs. node state
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Node State

Flooding

Central
Server

O(N)

O(N)O(1)

O(1)

O(log N)

O(log N)

Bottleneck:
•Communication
Overhead

•False negatives
Bottlenecks:
•Memory, CPU, Network
•AvailabilityDistributed 

Hash Table

• Scalability: O(log N)
• No false negatives
• Resistant against changes

– Failures, Attacks
– Short time users
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1.4  Distributed Indexing1.4  Distributed Indexing

H(„my data“)
= 3107

2207

7.31.10.25

peer-to-peer.info

12.5.7.31

95.7.6.10

86.8.10.18

planet-lab.orgberkeley.edu

2906
3485

201116221008
709

611

89.11.20.15

?

Routing in O(log(N)) steps 
to the node 

storing the data

Nodes store O(log(N)) 
routing information to other 

nodes
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Distributed IndexingDistributed Indexing

• Approach of distributed indexing schemes
– Data and nodes are mapped into same address space
– Intermediate nodes maintain routing information to target nodes

• Efficient forwarding to „destination“ (content – not location)
• Definitive statement of existence of content

• Problems
– Maintenance of routing

information required
– Fuzzy queries not

primarily supported
(e.g, wildcard searches)

No false 
negatives

O(1)O(N)
Central 
Server

O(log N)O(log N)Distributed 
Hash Tables

O(N²)O(1)Flooding 
Search

RobustnessFuzzy 
Queries

Communi-
cation

Overhead

Per Node 
StateSystem No false 

negatives
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O(log N)O(log N)Distributed 
Hash Tables
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Per Node 
StateSystem
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DHT: MotivationDHT: Motivation

• Why do we need DHTs?

• Searching in P2P networks is not efficient
– Either centralized system with all its problems
– Or distributed system with all its problems
– Hybrid systems cannot guarantee discovery either

• Actual file transfer process in P2P network is scalable
– File transfers directly between peers

• Searching does not scale in same way

• Original motivation for DHTs:
More efficient searching and object location in P2P networks

• Put another way: Use addressing instead of searching
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Recall: Hash TablesRecall: Hash Tables

• Hash tables are a well-known data structure

• Hash tables allow insertions, deletions, and finds in constant (average) time

• Hash table is a fixed-size array
– Elements of array also called hash buckets

• Hash function maps keys to elements in the array
– Note: mapping normally requires one precise key, no complex queries

• Properties of good hash functions:
– Fast to compute
– Good distribution of keys into hash table
– Example: SHA-1 algorithm



Uni Innsbruck Informatik Uni Innsbruck Informatik -- 1717

Hash Tables: ExampleHash Tables: Example

• Hash function:
hash(x) = x mod 10

• Insert numbers 0, 1, 4, 9, 16, 
and 25

• Easy to find if a given key is 
present in the table
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Distributed Hash Table: IdeaDistributed Hash Table: Idea

• Hash tables are fast for 
searching

• Idea: Distribute hash buckets 
(value ranges) to peers

• Result is Distributed Hash Table
(DHT)

• Need efficient mechanism for 
finding which peer is responsible 
for which bucket and routing 
between them
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DHT: PrincipleDHT: Principle

• In a DHT, each node is responsible for 
one or more hash buckets
– As nodes join and leave, the 

responsibilities change

• Nodes communicate among themselves 
to find the responsible node
– Scalable communications make DHTs 

efficient

• DHTs support all the normal hash table 
operations
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Summary of DHT PrinciplesSummary of DHT Principles

• Hash buckets distributed over nodes

• Nodes form an overlay network
– Route messages in overlay to find responsible node

• Routing scheme in the overlay network is the difference between 
different DHTs

• DHT behavior and usage:
– Node knows “object” name and wants to find it

• Unique and known object names assumed
– Node routes a message in overlay to the responsible node
– Responsible node replies with “object”

• Semantics of “object” are application defined
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AddressingAddressing in Distributed Hash Tablesin Distributed Hash Tables

• Step 1: Mapping of content/nodes into linear space
– Usually: 0, …, 2m-1 >> number of objects to be stored
– Mapping of data and nodes into an address space (with hash function)

• E.g., Hash(String) mod 2m: H(„my data“) 2313
– Association of parts of address space to DHT nodes

H(Node Y)=3485

3485 -
610

1622 -
2010

611 -
709

2011 -
2206

2207-
2905

(3485 -
610)

2906 -
3484

1008 -
1621

Y

X

2m-1 0

Often, the address 
space is viewed as 
a circle.

Data item “D”:
H(“D”)=3107 H(Node X)=2906
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AssociationAssociation of Address Space with Nodesof Address Space with Nodes

• Each node is responsible for a part of the value range
– Often with redundancy (overlapping of parts)
– Continuous adaptation
– Real (underlay) and logical (overlay) 

topology are (mostly) uncorrelated

Logical view of the 
Distributed Hash Table

Mapping on the 
real topology

2207

29063485

201116221008
709

611

Node 3485 is responsible 
for data items in range 
2907 to 3485 
(in case of a Chord-DHT)
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StepStep 2: Routing to a Data Item2: Routing to a Data Item

• Step 2:
Locating the data (content-based routing)

• Goal: Small and scalable effort
– O(1) with centralized hash table

• But: 
Management of a centralized hash table is very costly (server!)

– Minimum overhead with distributed hash tables
• O(log N): DHT hops to locate object
• O(log N): number of keys and routing information per node

(N = # nodes)
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StepStep 2: Routing to a Data 2: Routing to a Data Item /2Item /2

• Routing to a K/V-pair
– Start lookup at arbitrary node of DHT
– Routing to requested data item (key)

(3107, (ip, port))

Value = pointer to location of data

Key = H(“my data”)

Node 3485 manages 
keys 2907-3485, 

Initial node
(arbitrary)

H(„my data“)
= 3107

2207

2906
3485

2011
16221008

709

611
?
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Step 2: Routing to a Data Step 2: Routing to a Data Item /3Item /3

• Getting the content
– K/V-pair is delivered to requester
– Requester analyzes K/V-tuple

(and downloads data from actual location – in case of indirect storage)

H(„my data“)
= 3107

2207

2906
3485

2011
16221008

709

611
?

Get_Data(ip, port)

Node 3485 sends 
(3107, (ip/port)) to requester

In case of indirect storage:
After knowing the actual 

Location, data is requested
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DataData--ID Association ID Association –– Direct StorageDirect Storage

• How is content stored on the nodes?
– Example: H(“my data”) = 3107 is mapped into DHT address space

• Direct storage
– Content is stored in responsible node for H(“my data”) 

Inflexible for large content – o.k., if small amount data (<1KB)

D
D

134.2.11.68

2207

2906
3485

201116221008709

611

HSHA-1(„D“)=3107

D
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DataData--ID Association ID Association –– Indirect StorageIndirect Storage

• Indirect storage
– Nodes in a DHT store tuples like (key,value)

• Key = Hash(„my data”) 2313
• Value is often real storage address of content:

(IP, Port) = (134.2.11.140, 4711)

– More flexible, but one step more to reach content

2207

29063485

201116221008709

611

HSHA-1(„D“)=3107

Item D: 134.2.11.68D
134.2.11.68
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NodeNode ArrivalArrival

• Joining of a new node
1. Calculation of node ID
2. New node contacts DHT via arbitrary node
3. Assignment of a particular hash range
4. Copying of K/V-pairs of hash range (usually with redundancy)
5. Binding into routing environment

2207

29063485

201116221008709

611

ID: 3485

134.2.11.68
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NodeNode Failure / DepartureFailure / Departure

• Failure of a node
– Use of redundant K/V pairs (if a node fails)
– Use of redundant / alternative routing paths
– Key-value usually still retrievable if at least one copy remains

• Departure of a node 
– Partitioning of hash range to neighbor nodes
– Copying of K/V pairs to corresponding nodes
– Unbinding from routing environment
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DHTDHT InterfacesInterfaces

• Generic interface of distributed hash tables
– Provisioning of information 

• Publish(key,value)
– Requesting of information (search for content)

• Lookup(key)
– Reply

• Value

• DHT approaches are interchangeable (with respect to interface)
– Generic DHTs can be built – cf. OpenDHT ( http://ww.opendht.org )

Put(Key,Value) Get(Key)

Value

Distributed Application

Node 1 Node NNode 2 . . . .Node 3

Distributed Hash Table 
(CAN, Chord, Pastry, Tapestry, …)
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ComparisonComparison: DHT vs. DNS: DHT vs. DNS

• Comparison DHT vs. DNS
– Traditional name services follow fixed mapping

• DNS maps a logical node name to an IP address
– DHTs offer flat / generic mapping of addresses

• Not bound to particular applications or services
• „value“ in (key, value) may be an address, a document or other data

Domain Name System
– Mapping: 

Symbolic name IP address
– Is built on a hierarchical structure 

with root servers
– Names refer to administrative 

domains
– Specialized to search for computer 

names and services 

Distributed Hash Table
– Mapping: key value

can easily realize DNS 
– Does not need a special server

– Does not require special name space
– Can find data that are independently 

located of computers
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Summary: Properties of DHTsSummary: Properties of DHTs

• Use of routing information for efficient search for content

• Keys are evenly distributed across nodes of DHT
– No bottlenecks 
– A continuous increase in number of stored keys is admissible
– Failure of nodes can be tolerated
– Survival of attacks possible

• Self-organizing system

• Simple and efficient realization

• Supporting a wide spectrum of applications
– Flat (hash) key without semantic meaning
– Value depends on application

• Fuzzy queries inherently not supported
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DHT Examples, Part 1: CAN and ChordDHT Examples, Part 1: CAN and Chord

Reminder: all DHT systems provide storage/retrieval of 
K/V pairs – they differ in the overlay routing scheme.
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CAN: Content Addressable NetworkCAN: Content Addressable Network

• Developed at UC Berkeley
– Originally published in 2001 at Sigcomm conference

• CAN’s overlay routing easy to understand
– Paper concentrates more on performance evaluation
– Also discussion on how to improve performance by tweaking

• Project did not have much of a follow-up
– Only overlay was developed, no bigger ensuing efforts
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CAN: BasicsCAN: Basics

• CAN based on D-dimensional Cartesian coordinate space
– Our examples: D = 2
– One hash function for each dimension

• Entire space is partitioned amongst all the nodes
– Each node owns a zone in the overall space

• Abstractions provided by CAN:
– Can store data at points in the space
– Can route from one point to another

• Point = Node that owns the zone in which the point (coordinates) is 
located

• Order in which nodes join is important
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CAN: PartitioningCAN: Partitioning

1
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CAN: PartitioningCAN: Partitioning

1 2
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CAN: PartitioningCAN: Partitioning

1

2

3
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CAN: PartitioningCAN: Partitioning

1

2

3

4
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CAN: PartitioningCAN: Partitioning

• CAN forms a 
d-dimensional 
torus
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CAN: Node InsertionCAN: Node Insertion

I

New node

Discover some 
node “I” already 
in CAN
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CAN: Node InsertionCAN: Node Insertion

pick random 
point in space

I

(p,q)

New node

New node picks
its coordinates
in space
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CAN: Node InsertionCAN: Node Insertion

(p,q)

I routes to 
(p,q), and 
discovers that 
node J owns 
(p,q)

I

J

new node
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CAN: Node InsertionCAN: Node Insertion

NewJ

Split J’s zone 
in half. New 
owns one half
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CAN: Routing TableCAN: Routing Table
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CAN: RoutingCAN: Routing

(a,b)

(x,y)
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CAN: Storing ValuesCAN: Storing Values

a = hx(K)

x = a

node I::insert(K,V)

I

y = b

b = hy(K)

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 4848

CAN: Storing ValuesCAN: Storing Values

(1)  a = hx(K)
b = hy(K)

(2)  route(K,V) -> (a,b)

node I::insert(K,V)

I
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CAN: Storing ValuesCAN: Storing Values

(2)  route(K,V) -> (a,b)

(3)  (a,b) stores (K,V) 

(K,V)

node I::insert(K,V)

I(1)  a = hx(K)
b = hy(K)
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CAN: Retrieving ValuesCAN: Retrieving Values

(2)  route “retrieve(K)” to (a,b) (K,V)

(1)  a = hx(K)
b = hy(K)

node J::retrieve(K)

J
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Node RemovalNode Removal

• When a CAN node quits (or disappears), a neighbor must take over

• CAN is based on squares
– Strange figures could appear… defragmentation needed
– Tree representation facilitates understanding the process

• Partitioning is performed according to some rules:
– Strict sequencing of value range partitioning
– According to order D

e.g. x, y, z, x, y, z, ... if D=3

• Partitioning tree reflects
„history“ of partitioning process X

Y

X

Y0 1

0 1

B 0 1

D 0 1

EC

0 1

FA
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StructureStructure of a CAN of a CAN –– ExampleExample

Insertion of nodes A,…, D

A (1)

B (0)

A (1)

B (00) C (01)

A (1)

B (00)
D (010)

C (011)

0 1

AB

0 1

A
C

0 1

B

0 1

A0 1

B
C

0 1

D

x

y
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StructureStructure of a CAN of a CAN –– ExampleExample /2/2

Insertion of nodes E, F, G

A (1)

B (00)
D (010)

C 
(0110)

A (10)

B (00)

F (11)
A (100)

F (11)
G (101)

E 
(0111)

D (010)

C 
(0110)

E 
(0111)

B (00)
D (010)

C 
(0110)

E 
(0111)

0 1

A0 1

B 0 1

D
E

0 1

C

0 1

0 1

B 0 1

D 0 1

EC

0 1

FA

0 1

0 1

B 0 1

D 0 1

EC

0 1

F0 1

GA

x

y
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Node RemovalNode Removal

• Region and managed key/value pairs are
transferred to neighbor
– Ideal case: regions can be merged according

to prior partitioning tree

– Otherwise: neighbor with smallest number of 
key gets both regions to manage (no merging!)

• Exit of a node: regular transfer procedure

• Failure of a node: TAKEOVER procedure
– Non-appearance of periodic update 

information at neighbors

– Neighbors initiate timer in proportion to size
of region

– (Smallest) neighbor signals TAKEOVER to other
neighbors and takes region over
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DefragmentationDefragmentation

• Zones are repeatedly reassigned in 
order to reduce defragmentation

• For every peer which owns at least 
two zones
– delete smallest zone
– find alternate peer which should take 

over the region

• Simple case:
Neighbor zone is not split
– Both peers are leafs in the CAN tree
– Assign zone to neighbor peer
– Eliminates the need to split zone 

above neighbor peer (only one peer 
left in charge of it)
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Defragmentation /2Defragmentation /2

• Difficult case: neighbor zone is split
– Carry out depth search in neighbor 

tree until two neighbor leaves are 
found

– Assign zones of both leafs to a peer
– Choose the other peer as replacement

• In the example:
– Peer E’s left assignment removed
– No other peer directly underneath 

this region in the tree
⇒ depth first search finds Peer D

– Reassignment eliminates partitioning 
of region above C (only one peer left 
in charge of it)

Depth search
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CAN PerformanceCAN Performance improvementsimprovements

• More dimensions
– Increases the number of neighbors – decreases the index structure

– More path selection possibilities

• Can apply other routing metrics (support for locality):
– Delay measurement between neighbors

– Choice of neighbors with the best delay

• More concurrent coordinate systems (realities)
– More concurrent hash tables – nodes are members

of r hash tables

– (K,V)-tuple is saved within r hash tables

– Mapping of keys onto r different coordinate
systems via different hash functions

– All “realities” are checked in each routing step

Note: Some of them 
would also work for 

other DHTs!
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MoreMore Dimensions Dimensions ↔↔ More RealitiesMore Realities

• More dimensions
– More neighbors
– More routing possibilities
– More state information O(2D)

• More coordinate systems (r)

– r possibilities for routing

– State information O(r·D)

– r-time redundancy

Conclusion: more dimensions lead to shorter paths within the overlay
(...but more coordinate systems increase the redundancy)

Increase of dimensions Increase of realities Comparison
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OtherOther improvementsimprovements for CANfor CAN

• Overlap regions 
– k nodes jointly manage one zone

(MAXPEERS nodes per zone)
– Every peer knows neighbors + all peers

in its zone
– Results:

• more redundancy
• Faster routing paths because

of smaller number of zones
(O(MAXPEERS) path length reduction)

• Multiple possible paths enable locality
support

• Equal (uniform) partition of regions
– Target zone tests during join procedure, whether there are “large” neighbors in 

proximity being more qualified for partitioning+

• Multiple hashing
– Objects stored multiple times with different keys
– Increases robustness, reduces distances (lookup only needed to closest copy, no. of 

hops is indirectly proportional to no. of copies)
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CAN improvements and ComplexityCAN improvements and Complexity

• Overlay-Underlay mapping: Use well-known landmark servers
– Nodes join CAN in different areas, depending on distance to landmarks

• Pick points “near” landmark
– Idea: Geographically close nodes see same landmarks

• CAN Complexity:
( D = dimensions (assumed to be 2 up to now), N = number of peers )

– State information per node : O(D)
• Need to neighbors per coordinate axis
• Independent of N

– Routing: O(D N1/D) hops within overlay
• Effort = O(log N), with D = log N

– Problem: N has to be known before

• For routing: multiple dimensions are better
• But: multiple realities improve availability and fault tolerance



Uni Innsbruck Informatik Uni Innsbruck Informatik -- 6161

ChordChord

• Chord was developed at MIT
– Originally published in 2001 at Sigcomm conference (like CAN!)

• Chord’s overlay routing principle quite easy to understand
– Paper has mathematical proofs of correctness and performance

• Many projects at MIT around Chord
– CFS storage system
– Ivy storage system
– Plus many others…
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Chord: BasicsChord: Basics

• Chord uses SHA-1 hash function
– Results in a 160-bit object/node identifier
– Same hash function for objects and nodes

• Node ID hashed from IP address, object ID hashed from object name
– Object names somehow assumed to be known by everyone 

• SHA-1 gives a 160-bit identifier space

• Organized in a ring which wraps around (i.e. modulo arithmetic)
– Nodes keep track of predecessor and successor
– Node responsible for objects between its predecessor and itself
– Overlay is often called “Chord ring” or “Chord circle”
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Joining: StepJoining: Step--ByBy--Step ExampleStep Example
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7

• Setup: Existing network with nodes 
on 0, 1 and 4

• Note: Protocol messages simply 
examples

• Many different ways to implement 
Chord
– Here only conceptual example
– Covers all important aspects
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Joining: StepJoining: Step--ByBy--Step Example: StartStep Example: Start

• New node wants to join
• Hash of the new node: 6
• Known node in network: Node1

• Contact Node1
– Include own hash

• Remember, status of the ring:
– Each node knows predecessor
– Each node knows successor
– Each node knows its responsibility

• Node 0: data for ]4..0]
• Node 1: data for ]0..1]
• Node 4: data for ]1..4]
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7
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Joining: StepJoining: Step--ByBy--Step Example:Step Example:
Contact known nodeContact known node
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JOIN 6

• Arrows indicate
open connections

• Example assumes 
connections are 
kept open, i.e., 
messages processed 
recursively

• Iterative processing 
is also possible
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Joining: StepJoining: Step--ByBy--Step Example:Step Example:
Join gets routed along the networkJoin gets routed along the network

0

1

2

3

4

5

6

7

JOIN 6
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Joining: StepJoining: Step--ByBy--Step Example:Step Example:
Successor of a new node foundSuccessor of a new node found
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JOIN 6
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Joining: StepJoining: Step--ByBy--Step Example:Step Example:
Join successful + transferJoin successful + transfer

0

1

2

3

4

5

6

7

Transfer: data in range ]4..6]

• Joining is 
successful

• Old responsible 
node transfers
data that should
be in new node

• New node informs 
node 4 about new 
successor (not 
shown)

Note: transferring can also happen later
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Storing a ValueStoring a Value

• Node 6 wants to store 
object with name 
“Foo” and value 5

• hash(Foo) = 2
0

1

2

3

4

5

6

7
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Storing a ValueStoring a Value
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STORE 2 5
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Storing a ValueStoring a Value
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STORE 2 5
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Storing a ValueStoring a Value
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STORE 2 5

Value is now stored
in node 4.



Uni Innsbruck Informatik Uni Innsbruck Informatik -- 7373

Retrieving a ValueRetrieving a Value

• Node 1 wants to get 
object with name “Foo”

• hash(Foo) = 2
Foo is stored on node 4
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Retrieving a ValueRetrieving a Value
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RETRIEVE 2



Uni Innsbruck Informatik Uni Innsbruck Informatik -- 7575

Retrieving a ValueRetrieving a Value
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RESULT 5
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Chord: Scalable RoutingChord: Scalable Routing

• Routing happens by passing message to successor

• What happens when there are 1 million nodes?
– On average, need to route 1/2-way across the ring
– In other words, 0.5 million hops! Complexity O(n)

• How to make routing scalable?

• Answer: Finger tables
– Keep track of more nodes than just successor and predecessor
– Allow for faster routing by jumping long way across the ring
– Routing scales well, but needs more state information

• Finger tables not needed for correctness, only performance 
improvement
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Chord: Finger TablesChord: Finger Tables

• In m-bit identifier space, node has up to m fingers
– Fingers are stored in the finger table

• Row i in finger table at node n contains first node s that succeeds n
by at least 2i-1 on the ring
– In other words:

finger[i] = successor(n + 2i-1)
– First finger is immediate successor

• Distance to finger[i] is at least 2i-1

• Finger intervals increase with distance
from node n
– If close, short hops; If far, long hops
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Chord: Scalable RoutingChord: Scalable Routing

Two key properties:
• Each node only stores information about a small number of nodes
• Cannot in general determine the successor of an arbitrary ID
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3-bit ID space ⇒ 3 rows of fingers
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Joining: update of finger pointersJoining: update of finger pointers

• Node 82 joins

• Finger entries to node 86 may point now to new node 82

• Candidates for updates:
– Nodes (counter-clockwise), 

whose 2i-th finger entry have to point to N 

• Check predecessors ti of keys (s – 2i)
– Route to s - 2i

• If t’s 2i-finger points to a node 
beyond N:
– change t’s 2i-finger to N

– Set t to predecessor of t 
and repeat

• ELSE continue with 2i+1

• O(log2 N) for looking up and updating finger entries

1

8

32

72

87
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74

82 82-23

23-finger=86
82 23-finger=86

82

23-finger=72X
X

example: i=3
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NodeNode DepartureDeparture

• Deliberate node departure
– clean shutdown instead of failure

• For simplicity: treat as failure
– system already failure tolerant
– soft state: automatic state restoration
– state is lost briefly
– invalid finger table entries: reduced routing efficiency

• For efficiency: handle explicitly
– notification by departing node to

• successor, predecessor, nodes at finger distances
– copy (key, value) pairs before shutdown
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NodeNode Departure /2Departure /2

• Similar procedure as with node join
– Update of fingers pointing to departing node similar to node join 

procedure

82-23

86 23-finger=82
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23-finger=72X
X
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Example: i=3

23-finger=82
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ChordChord: Performance: Performance

• Impact of node failures on lookup failure rate
– lookup failure rate roughly equivalent to node failure rate
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ChordChord: : Performance /2Performance /2

Moderate impact of 
number of nodes on 

lookup latency

Consistent average 
path length
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Chord: PerformanceChord: Performance

• Search performance of “pure” Chord O(n)
– Number of nodes is n

• With finger tables, need O(log n) hops to find the correct node
– Fingers separated by at least 2i-1

– With high probability, distance to target halves at each step
– In beginning, distance is at most 2m

– Hence, we need at most m hops

• For state information, “pure” Chord has only successor and predecessor, 
O(1) state

• For finger tables, need m entries
– Actually, only O(log n) are distinct
– Proof is in the paper

• Management actions (join/leave/fail): O(log2 n)
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