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Some questions...

How scalable is Gnutella?

L]

« How robust is Gnutella?
o Why does FreeNet work?

» What would an ideal (unstructured)
P2P system look like?

* What is do the overlay networks
of existing (unstructured)
P2P systems look like?

Gnutella snapshot, 2000
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Scalability of Gnutella: quick answer

Bandwidth Generated in Bytes (Message 83 bytes)
- Searching for a 18 byte string

T=2 T=3 T=4 T=5 T=6 T=7 T=8
N=2 332 498 664 830 996 1,162 1,328
N=3 747 1,743 3,735 7,719 15,687 31,623 63,495
N=4 1,328 4,316 13,280 40,172 120,848 362,876 1,088,960
N=5 2,075 8,715 35,275 141,515 566,475 2,266,315 9,065,675
N=6 2,988 | 15,438 77,688 388,938 1,945,188 9,726,438 48,632,688
N=7 4,067 | 24,983 | 150,479 903,455 5,421,311 35,528,447 192,171,263
N=8 5312 | 37,848 | 262,600 | 1,859,864 13,019,712 | 91,138,648 637,971,200

- N = number of connections open

- T = number of hOpS Source: Jordan Ritter: Why Gnutella Can't Scale. No, Really.
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Graphs

Rigorous analysis of P2P systems: based on graph theory
- Refresher of graph theory needed

First: graph families and models
- Random graphs

- Small world graphs

- Scale-free graphs

Then: graph theory and P2P
- How are the graph properties reflected in real systems?
« Users (peers) are represented by vertices in the graph
« Edges represent connections in the overlay (routing table entries)

Concept of self-organization
- Network structures emerge from simple rules
- E.g. also in social networks, www, actors playing together in movies
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What Is a Graph?

» Definition of a graph:
Graph G = (V, E) consists of two finite sets, set V of vertices (nodes)
and set E of edges (arcs) for which the following applies:
1. If e € E, then exists (v, u) e Vx V, such thatve eandu e e

2. If e € E and above (v, u) exists, and further for (x, y) € V x V applies
x e eandy e e, then {v, u} = {x, y}

Example graph with
4 vertices and 5 edges
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Properties of Graphs

e An edge e € E is directed if the start and end vertices in condition 2
above are identical: v=xandy=u

* Anedgee € E isundirected if v=xandy = u as well as v =y and
u = x are possible

o Agraph G is directed (undirected) if the above property holds for all
edges

» Aloop is an edge with identical endpoints

« Graph G, = (Vy, E,) is a subgraph of G = (V, E), if V,cVand E; c E
(such that conditions 1 and 2 are met)
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Important Types of Graphs

» Vertices v, u € V are connected if there is a path from v to u: (v, v,),
(Vs V3)s vy (Vg  U) € E

e Graph G is connected if all v, u € V are connected

» Undirected, connected, acyclic graph is called a tree
- Sidenote: Undirected, acyclic graph which is not connected is called a forest

» Directed, connected, acyclic graph is also called DAG
- DAG = Directed Acyclic Graph (connected is assumed)

e An induceq g_raph G_(VC) = (V,, Ep) is a graph V. <V and with edges
Ec={e=(@,0)11] eV}

« Aninduced graph is a component if it is connected
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Vertex Degree

« Ingraph G = (V, E), the degree of vertex v € V is the total number of
edges (v, u) e Eand (u,v) e E
- Degree is the number of edges which touch a vertex

» For directed graph, we distinguish between in-degree and out-degree
- In-degree is number of edges coming to a vertex
- Out-degree is number of edges going away from a vertex

» The degree of a vertex can be obtained as:
- Sum of the elements in its row in the incidence matrix
- Length of its vertex incidence list
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Important Graph Metrics

Distance: d(v, u) between vertices v and u is the
length of the shortest path between v and u

Average path length: Sum of the distances over all
pairs of nodes divided by the number of pairs

Diameter: d(G) of graph G is the maximum of
d(v, u) forallv,u eV

Order: the number of vertices in a graph

Clustering coefficient: number of edges between neighbors
divided by maximum number of edges between them

. i i)) = number of edges b
C(l) _ w Eg;lg(;])t))orsnz;ni er of edges between c=0
d (I )(d (I) _ 1) d(i) = degree of i Source: Wikipedia
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Random Graphs

» Random graphs are first widely studied graph family
- Many P2P networks choose neighbors more or less randomly

» Two different notations generally used:
- Erdos and Renyi
- Gilbert (we will use this)

+ Gilbert’s definition: Graph G, , (with n nodes) is a graph where the
probability of an edge e = (v, w) is p

Construction algorithm:

» For each possible edge, draw a random number

« If the number is smaller than p, then the edge exists
e p can be function of n or constant
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Basic Results for Random Graphs

Giant Connected Component

Let ¢ > 0 be a constant and p = c/n. If ¢ < 1 every component of G, ; has order
O(log N) with high probability. If ¢ > 1 then there will be one component of
size n*(f(c) + O(1)) where f(c) > 0, with high probability. All other components
have size O(log N)

« In plain English: Giant connected component emerges with high probability
when average degree is about 1

Node degree distribution
» If we take a random node, how high is the probability P(k) that it has degree k?
« Node degree is Poisson distributed

kq-C
- Parameter c = expected number of occurrences P(k) = ce

k!

Clustering coefficient

o Clustering coefficient of a random graph is asymptotically equal to p with high
probability
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Random Graphs: Summary

o Before random graphs, regular graphs were popular
- Regular: Every node has same degree

» Random graphs have two advantages over regular graphs
1. Many interesting properties analytically solvable

2. Much better for applications, e.g., social networks

o Note: Does not mean social networks are random graphs; just that the
properties of social networks are well-described by random graphs

e Question: How to model networks with local clusters and small
diameter?

e Answer: Small-world networks
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Six Degrees of Separation

Famous experiment from 1960’s (S. Milgram)

» Send a letter to random people in Kansas and Nebraska and ask
people to forward letter to a person in Boston
- Person identified by name, profession, and city

Rule: Give letter only to people you know by first name and ask them
to pass it on according to same rule

- Some letters reached their goal

Letter needed six steps on average to reach the person

Graph theoretically: Social networks have dense local structure, but
(apparently) small diameter

- Generally referred to as “small world effect”
- Usually, small number of persons act as “hubs”
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Milgram's Small World Experiment
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Small-World Networks

» Developed/discovered by Watts and Strogatz (1998)
- Over 30 years after Milgram’s experiment!

» Watts and Strogatz looked at three networks
- Film collaboration between actors, US power grid, Neural network of worm C. elegans

» Measured characteristics:
- Clustering coefficient as a measure for ‘regularity‘, or ‘locality’ of the network
« If it is high, edges are rather build between neighbors than between far away nodes
- The average path length between vertices

e Result

- Most real-world networks have a high clustering coefficient
(0.3-0.4), but nevertheless a low average path length

e Grid-like networks:

- High clustering coefficient = high average path length
(edges are not ‘random°, but rather ‘local®)
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Small-World Networks and Random Graphs

» Results
- Compared to a random graph with same number of nodes
- Diameters similar, slightly higher for real graph
- Clustering coefficient orders of magnitude higher

o Definition of small-worlds network

- Dense local clustering structure and small diameter comparable to that
of a same-sized random graph

D¢ (real) | Dg(random) | C(real) | C'(random)

Film collaboration 3.65 2.99 0.79 0.00027

Power grid 18.7 12.4 0.08 0.005

C. elegans 2.65 2.25 0.28 0.05
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Constructing Small-World Graphs

Put all n nodes on a ring, number them consecutively from 1 to n

» Connect each node with its k clockwise neighbors

Traverse ring in clockwise order

o For every edge
- Draw random number r

- If r < p, then re-wire edge by selecting a random target node from the
set of all nodes (no duplicates)

- Otherwise keep old edge

» Different values of p give different graphs
- If pis close to 0, then original structure mostly preserved
- If pis close to 1, then new graph is random
- Interesting things happen when p is somewhere in-between
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Regular, Small-World, Random

Regular Small-World Random

L

p=0 p=1
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Problems with Small-World Graphs

Small-world graphs explain why:

 Highly clustered graphs can have short average path lengths
("short cuts”)

Small-world graphs do NOT explain why:
o This property emerges in real networks
- Real networks are practically never ring-like

Further problem with small-world graphs:
» Nearly all nodes have same degree

» Not true for random graphs

» What about real networks?
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Internet

» Faloutsos et al. study from 99: Internet topology examined in 1998

- AS-level topology, during 1998 Internet grew 45%
SKITTER

« Motivation:
- What does the Internet look like?
- Are there any topological properties that don’t
change over time?
- How to gemerate Internet-like graphs
for simulations?

* 4 key properties found,
each follows a power-law;
Sort nodes according to their (out)degree
1. Outdegree of a node is proportional to its rank to the power of a constant

2. Number of nodes with same outdegree is proportional to the outdegree to the
power of a constant

3. Eigenvalues of a graph are proportional to the order to the power of a constant

4. Total number of pairs of nodes within a distance d is proportional to d to the
power of a constant
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World Wide Web

o Links between documents in the World Wide Web
- 800 Mio. documents investigated (S. Lawrence, 1999)

o What was expected so far?
- Number of links per web page: (k) ~ 6
- Number of pages in the WWW: Ny ~ 10°

- Probability “page has 500 links”:
P(k=500) ~ 10-%°

- Number of pages with 500 links:
N(k=500) ~ 10-9
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WWW: result of investigation
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Power Law Networks

Also known as scale-free networks

o "Power Law” relationship for Web pages

- The probability P(k) that a page has k links (or k other pages link to this
page) is proportional to the number of links k to the power of y

General "Power Law” Relationships

- A certain characteristic k is - independent of the growth of the system -
always proportional to k2, whereby a is a constant (often -2 < a < -4)

Power laws very common (“natural”)
- and power law networks exhibit small-world-effect

- E.g. WWW: 19 degrees of separation
(R. Albert et al, Nature (99); S. Lawrence et al, Nature (99))
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Examples for Power Law Networks

» Economics
- Pareto: income distribution
(common simplification: 20% of population own 80% of the wealth)
- Standardized price returns on individual stocks or stock indices

- Sizes of companies and cities (Zipf’s law) _
o Human networks

- professional (e.g. collaborations between actors, scientists)
- social (friendship, acquaintances)
- Sexual-contact networks

Many other natural occurrences
- Distribution of English words (Zipf’s law again)
- Areas burnt in forest fires
- Meteor impacts on the moon

Internet also follows some power laws
- Popularity of Web pages (possibly related to Zipf’s law for English words?)
- Connectivity of routers and Autonomous Systems
- Gnutella’s topology!
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Barabasi-Albert-Model

* How do power law networks emerge?

- In a network where new vertices (nodes) are added and new nodes tend to
connect to well-connected nodes, the vertex connectivities follow a power-law

*  Barabasi-Albert-Model: power-law network is constructed with two rules
1. Network grows in time
2. New node has preferences to whom it wants to connect

e Preferential connectivity modeled as
- Each new node wants to connect to m other nodes

- Probability that an existing node j gets one of the m connections is proportional
to its degree d(j)

« New nodes tend to connect to well-connected nodes

» Another way of saying this: “the rich get richer”
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Copying model

» Alternative generative model (R. Kumar, P. Raghavan, et al. 2000)
- In each time step randomly copy one of the existing nodes keeping all its links
- Connect the original node and the copy

- Then randomly remove edges from both nodes with a very small probability,
and for each removed edge randomly draw new target nodes

« In this model the probability of node v getting a new edge in some time
step is proportional to its degree at that time
- The more edges it has, the more likely it is
that one of its neighbors is chosen for -
copying in the next time step el

¢ In contrast to random networks,
scale-free networks show a small
number of well-connected hubs and
many nodes with few connections

(a) Random network (b) Scale-free network
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Robustness of Scale Free Networks

Experiment: take network of 10000 nodes (random and power-law) and
remove nodes randomly

Random graph:
Take out 5% of nodes: Biggest component 9000 nodes

- Take out 18% of nodes: No biggest component, all components between 1 and 100
nodes

- Take out 45% of nodes: Only groups of 1 or 2 survive

Power-law graph:
- Take out 5% of nodes: Only isolated nodes break off
- Take out 18% of nodes: Biggest component 8000 nodes
- Take out 45% of nodes: Large cluster persists, fragments small

Networks with power law exponent < 3 are very robust
against random node failures
- ONLY true for random failures!
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Robustness of Scale-Free Networks /2

Robustness against random failures = important property of networks with scale-
free degree distribution

- Remove a randomly chosen vertex v from a scale-free network: with high probability,
it will be a low-degree vertex and thus the damage to the network will not be high

But scale-free networks are very sensitive against attacks

- If a malicious attacker removes the highest degree vertices first,
the network will quickly decompose in very small components

Note: random graphs are not robust against random failures, but not sensitive
against attacks either (because all vertices more or less have the same degree)

- .__--. .
__ Failure | N\
of nodes
./‘
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Robustness of Scale-Free Networks /3

Random failures vs. directed attacks

04 wisuee

Random Graph

~Power Law" Graph
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Kleinberg’s Small-World Navigability Model

« Small-world model and power law explain why short paths exist

» Missing piece in the puzzle: why can we find these paths?
- Each node has only local information
- Even if a short cut exists, how do people know about it?
- Milgram’s experiment:

« Some additional information (profession, address, hobbies etc.) is used to
decide which neighbor is “closest” to recipient

« results showed that first steps were the largest

o Kleinberg’s Small-World Model
- Set of points in an n x n grid

- Distance is the number of “steps” separating points
o d@i, §) = Ix - 51 + lyi -yl

o Construct graph as follows:
- Every node i is connected to node j within distance g

- For every node i, additional q edges are added. Probability that node j is selected
is proportional to d(i, j)", for some constant r
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Navigation in Kleinberg’s Model

« Simple greedy routing
- If r=2, expected lookup time is O(logZn)
- If r=2, expected lookup time is Q(n¢), € depends on r

o Decentralized algorithm: sending node only knows its local neighbors, position
of the target node on the grid, locations and long-range contacts of all nodes
who come in contact of the message

« Can be shown: Number of messages needed is proportional to O(log n) iff r=s
(s = number of dimensions)
- Idea behind proof: for any r < s there are too few random edges to make paths short
- Forr > s there are too many random edges = too many choices for passing message
o The message will make a (long) random walk through the network

« Kleinberg small worlds thus provide a way of building a peer-to-peer overlay
network, in which a very simple, greedy and local routing protocol is applicable
- Practical algorithm: Forward message to contact who is closest to target
- Assumes some way of associating nodes with points in grid (know about “closest”)
- Compare with CAN DHT (later)
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Unstructured P2P Networks

* What do real (unstructured) Peer-to-Peer Networks look like?

» Depends on the protocols used

- It has been found that some peer-to-peer networks, e.g., Freenet, evolve voluntarily
in a small-world with a high clustering coefficient and a small diameter

- Analogously, some protocols, e.g., Gnutella, will implicitly generate a scale-free
degree distribution

o Case study: Gnutella network

»  How does the Gnutella network evolve?
- Nodes with high degree answer more likely to Ping messages
- Thus, they are more likely chosen as neighbor
- Host caches always/often provide addresses of well connected nodes
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Gnutella

10,000

Links flog seale)

Node degrees in Gnutella follow Power-Law rule
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Gnutella /2

» Network diameter stayed nearly constant, though the network grew by one
order of magnitude

o Robustness

- Remember: we said that networks with power law exponent < 3 are very robust against
random node failures

- In Gnutella’s case, the exponent is 2.3

o Theoretical experiment
- Subset of Gnutella with 1771 nodes
- Take out random 30% of nodes, network still survives
- Take out 4% of best connected nodes, network splinters

« For more information on Gnutella, see:
- Matei Ripeanu, Adriana lamnitchi, lan Foster: Mapping the Gnutella Network, IEEE Internet Computing, Jan/Feb 2002
- Zeinalipour-Yazti, Folias, Faloutsos, “A Quantitative Analysis of the Gnutella Network Traffic”, Tech. Rep. May 2002
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Summary

o The network structure of a peer-to-peer system influences:
- average necessary number of hops (path length)
- possibility of greedy, decentralized routing algorithms
- stability against random failures
- sensitivity against attacks
- redundancy of routing table entries (edges)
- many other properties of the system build onto this network

o Important measures of a network structure are:
- average path length
- clustering coefficient
- the degree distribution

» Next: how to build systems based on edge generation rules such that a
network structure arises supporting the desired properties of the system
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