

Michael Welzl http://www.welzl.at

DPS NSG Team http://dps.uibk.ac.at/nsg Institute of Computer Science University of Innsbruck, Austria

Autobandwidth

 How much bandwidth to reserve for an LSP? based on knowledge about available bandwidth, i.e. traffic patterns - Manual estimations can be difficult (usually fluctuates with time of day)

· Wrong estimations possible:

- estimate too high \Rightarrow waste of bandwidth estimate too low \Rightarrow LSP cannot accommodate traffic worse (packet drops), so usually estimated conservatively
- note: RSVP only operates in control plane traffic shaping needed to
 ensure conformance

Solution: Autobandwidth

- Ingress of an LSP monitors traffic statistics and periodically adjusts LSP's bandwidth reservation to traffic demand Done by setting up new LSP and switching in make-before-break fashion
- Proprietary technology (no IETF standards)

TE Deployment considerations

- Scalability: how many LSPs possible / needed / reasonable?
 - one of the most important deployment considerations; hard to determine limited by connectivity requirements: any-to-any connectivity needs O(n²) LSPs hence normally only deployed in the core, where scalability issues can be solved with LSP hierarchy

Uni Innsbruck Informatik

Uni Innsbruck Informatik - 3

- limited by bandwidth ("size") of traffic trunk: if capacity exceeded, load balance via multiple LSPs
- Max. no. of supported LSPs normally provided by vendors • range of several tens of thousand LSPs often different numbers given fro head end and transit (middle LSR)
- Reservation granularity: size of individual reservations
- limited by bottleneck capacity - limited by number of LSPs (see above)

Offline optimization

- Possible to add offline optimization loop: measure traffic, simulate the network, derive settings, adjust if necessary, repeat
- · Was shown to enable traffic engineering in LDP based networks by manipulating IGP link metrics
 - less overhead and easier maintenance than RSVP-TE (at the cost of reduced control of network elements)
 - normally not advisable: influencing IGP can affect the whole network test results show worse results than with explicit routing, but much better results than without any TE $\,$

Little effort, poor performance RSVP-TE Major effort, good performance

Using TE for resource optimization

- TE deployment in parts of network for routing traffic away from congested link
 - tactical application; for quickly solving an immediate resource problem e.g. fix problems that occur as scheduled link upgrade is delayed, or
 - optimize usage of a particularly expensive link
- TE deployment throughout entire network for improving overall bandwidth utilization
- strategic application: for long-term benefit
- e.g. delay costly link upgrades by applying TE in network core
- In any case, TE based on knowledge about bandwidth requirement for LSP at its head end, available bandwidth at network nodes but this information is not always available.

Offline path computation

Remember CSPF / multiple paths example: suboptimal performance because future reservations unknown

Uni Innsbruck Informatik - 6

- no optimal strategy; can only be solved with offline path computation
- Several other practical advantages
- global view of reservations
- no surprises from dynamic computation
- ability to traverse AS boundaries (information for calculation not necessarily limited to TED)
- can calculate normal and failure cases, take both into account
- can use more sophisticated algorithms than CSPF
 - CSPF only takes calculating head end's LSPs into account, offline path computation can use view of the whole network

Offline IGP metri c cal cul ati on

Offline path computation difficulties

- · Volume of necessary data for calculation
- Changing network conditions can lead to large number of LSP configuration changes
 - may be impractical
 - solution: incorporate performance vs. configuration effort trade-off in calculation
- · Result must contain order of upgrade - configurations cannot be changed simultaneously on all routers
 - during update, problems can arise
- typically slow calculation; impractical for quick temporary fixes

Uni Innsbruck Informatik

Uni Innsbruck Informatik

Uni Innsbruck Informatik - 12

Failure detection

- Automatic indication hardware dependent (e.g. provided in packet-over-SONET/SDH, not provided in Ethernet) - need a general solution
- · IGP can detect failure but inefficient - message frequency = (CPU + network) load vs. detection speed trade-off
- Solution: Bidirectional Forwarding Detection (BFD) protocol - fast low-layer per-link ping
- BSD works well, so fast failure detection assumed to be available and work in upcoming slides

End-to-end protection

- Set up two LSPs: primary and secondary (also called "protection path")
 primary used; switch to secondary upon failure

 - stating secondary up in advance helps ensure
 fast switchover
 conformance of secondary path to traffic requirements
 - path diversity (shared links increase chance of double failure)
- · Switching to secondary path done by LSP head end upon reception of RSVP error message

Issues

- Source
 Secondary LSP resource reservation usually similar to primary
 total reservations = 2 x necessary reservations under normal operation
 wasted bandwidth can be prevented by assigning better priorities to primary LSPs
 (a whon the bandwidth days SONF-4 App)
- Unnecessary protection for some links (e.g. when they have SONET APS)
 Delay until arrival of RSVP error message nondeterministic

The problem

- Remember: MPLS enables convergence of services
- e.g., send best-effort IP + voice + video + ATM CBR over the same net some of this traffic is "fragile": users do not accept phone interruptions (but requirement slightly relaxed for cell phones \Rightarrow different levels of loss tolerance)

Uni Innsbruck Informatik - 9

- \Rightarrow Fast recovery from failures = key functionality of multiservice nets · IGP reconvergence speed may not be fast enough
- Some layer 1 technology can do this (but need to use such layers) e.g. SONET Automatic Protection Switching (APS)
- MPLS can help, but only with RSVP-TE

Local protection

- · Problems with end-to-end protection partially due to LSP head end being in control
- Hence, solution; protect as close as possible to point of failure
 - Use alternate sub-path (called "detour" or "bypass") within LSP consider cars on highway: bypass problem by using a country road for a while, but not all the way
- Faster reaction possible ⇒ Fast Reroute (FRR)

- Only done until head end acts

- · head end's secondary path can be better interior LSRs have different shortest paths to dest. than head end
 - not feasible to require interior LSRs to additionally maintain shortest
 paths from head end's point of view

Local protection /2

- Distinguish:
 - Resource that is protected: link or node
 - (influences placement of detour)
 - Number of LSPs protected: 1 ("one-to-one backup") or N ("facility backup") (both cases protected with only 1 detour)

Uni Innsbruck Infor

- Some terminology
 - backup path called detour in case of 1:1 backup, bypass in case of N:1
 - head end of backup path (router upstream of failure) called Point of Local tail end of backup path (where traffic merges into normal path again) called Merge Point (MP)

 - "normal path" = LSP receiving protection called "protected path"

Uni Innsbruck Informatik

Uni Innsbruck Informatik - 18

Link protection: control plane after failure

- Error messages (e.g. IGP) leading to LSP teardown must be suppressed
- LSP head end must be notified about failure
 - now is the time for the RSVP error message
 - contains "Notify" error code + "Tunnel locally repaired" subcode + flag in Record Route Object
 - Could theoretically be omitted, head end could rely on IGP messages but this would not work across multiple AS'es
- LSP head end now switches to secondary LSP (make-before-break) - because it learns what happened via "Tunnel locally repaired" in RSVP
 - new path could be the path that is already used
 - so why bother switching? depends on policy / implementation at head end note: if path is kept, must ensure that RSVP messages are correctly forwarded over backup path to avoid timeouts

Link protection: control plane before failure

- Backup path established around link - need to compute path (CSPF) + install state in PLR, MP and transit nodes
- · PLR must learn that it should do this
 - for a certain link + for certain LSP(s)
 - may not be necessary for all LSPs (e.g. voice vs. best effort IP)
- Choice of link configured at PLR, but LSP configured at LSP head end information propagated from head end to PLR via RSVP Path messages ("local protection desired" flag + optional Fast Reroute Object for telling PLR about constraints to be used in CSPF)

Node protection

- · If downstream end of link fails, must bypass the node (two links)
- PLR can only establish backup path if it knows the address of the downstream node after the failed node (and the label it expects)
- Address available in RRO of RSVP Path message, but not label \Rightarrow flag "label recording desired" was added to RRO - normally, LSRs only learn about immediate downstream labels
- Forwarding done as with facility backup (label stacking), but PLR must swap label with the one expected by the correct MP before pushing

Data plane

· One-to-one backup: can use alternate path in a "normal" way labels are swapped by all LSPs including PLR and MP, additional state necessary for alternate path at PLR and MP

Uni Innsbruck Informatik - 15

- Facility backup: additional label state necessary PLR and MP per LSP - may not be feasible
- Solution for facility backup: stack labels
 - PLR pushes backup path label on top of existing label
 - Penultimate hop popping used
 - traffic arrives at MP with the same label as if it would arrive via the
 - that the three states are expected as a state of the three states are three states are

Fate sharing

- If primary and secondary path use the same optical fiber, a bulldozer can eliminate both at the same time $% \left({{\left[{{{\rm{D}}_{\rm{el}}} \right]}_{\rm{el}}} \right)$
- this is called fate sharing
- the paths are said to be in the same Shared Risk Link Group (SRLG) or fate sharing
- · Avoiding SRLG = constraint for calculating the protection path
 - user-defined; like link colors, but can be dynamic: models dependencies between links, and link usage depends on routing changes
 not a very strict constraint
 - - e.g. increase link costs to make creating a SRLG less likely
 but generally better to have a SRLG than to have no protection path

How to learn about SRLGs?

- knowledge comes from network operator's database either manually configure routers or use IGP (GMPLS extensions for OSPF)

Bandwidth protection

• 100% working protection paths for all LSPs in the whole network without packet loss only possible if total network capacity is doubled - trade-off: (overprovisioning + better protection) vs. bandwidth costs - common rule of thumb: upgrade when average load exceeds 50%

Uni Innsbruck Info

- Bandwidth protection: other methods for guaranteeing that enough
- bandwidth will be available makes sense for local protection (FRR): traffic will only use backup path for a few seconds, there should be little packet loss during this interval
- PLR can announce this capability with flag in Record Route Object head can then request its usage for the LSP using flag in Session Attribute and Fast Reroute Objects
- LSPs where PLRs cannot do this can be made less attractive, e.g. by increasing their metric if incorporated as link in IGP

FRR deployment considerations /2

Bandwidth protection /2

- One-to-one backup: upon request for bandwidth protection, PLR only establishes backup path with enough bandwidth
- Facility backup: establishing appropriate backup path per LSP impossible by design but bandwidth on single path may not suffice for all LSPs
 - Solution: reserve fixed bandwidth + perform admission control
- So far, assumed that backup path is idle unless a failure happens - That's a waste
 - But if we let "normal" traffic share links with the backup path, failure can affect this traffic
 - Solution: apply DiffServ; map DSCP onto EXP bits in label, give protected traffic higher drop precedence (i.e. preferably dropped during congestion)

Uni Innsbruck Informatik - 21

LDP and IP FRR

LDF Attractive for operational simplicity, but does not support the mechanisms we've seen so far...

G

н

Uni Innsbruck Informatik - 24

Uni Innsbruck Informatik - 23

- seen so rar... Possibility: use one-hop RSVP LSPs, tunnel LDP sessions through them More attractive alternative: LDP based FRR LDP uses IGP, hence LDP FRR = IP FRR

IP FRR tunnel-based approact set up protection path with RSVP tunnel through it only in case of failure; as with RSVP, PLR must

- Idinte un out in KSVP, PLR must learn MP's label Microloops can happen due to IP routing Example on the right: all link costs 1, except G-H (3) and E-F (3) B-E-F-C = protection path Context of bookin path > costs via G

 - At A: costs of backup path > costs via G
 - Until IGP converged, G's shortest path to J is via A ⇒ for a while, traffic will loop!

FRR deployment considerations

- Scalability
- Problem complexity
 - Local protection said to be difficult to configure, but up-to-date implementations make it easier (dynamic calculation and establishment of protection paths)
- · Still, number of resources that can be protected limited by complexity Number of LSPs
- 1:1 protection: # backup paths depends on # protected resources and # LSPs
- N:1 protection: # backup paths only depends on # protected resources - Only true for link protection
- node protection: also depends on topology (different MPs for LSPs possible) Forwarding state · Depends on topology (e.g. length of protection path), protection type
- (1:1 or facility)
 Make-before-break temporarily consumes resources

IP FRR alternate path approach · Maintain alternate path at head end

- Example on previous slide: assume all link costs are 1 · A-G-H-I-J calculated in addition to default path A-B-C-J · A forwards to G when B-C link fails
- Link costs as in example: G would route back to A ("U-turn")
 - Prevention with U-turn alternates
 - let G detect that it sends traffic back via the incoming interface \Rightarrow use other (higher cost) path to destination (J) instead

 - · Does not work in arbitrary topologies
 - Calculating alternate paths adds computational complexity and
 - forwarding state (scalability concern) • No explicit control of path traffic will take upon failure

About combining DiffServ and TE

· Complementary: each mechanism has benefits that the other doesn't - e.g. DiffServ can provide guarantees, but not resilience

Uni Innsbruck Informatik - 20

Uni Innsbruck Informatik - 27

- Convergence enabled by MPLS (carry IP + Ethernet, ATM, FR, ...) leads to strict SLA requirements
- e.g. MPLS can provide resilience, but not prioritization via queuing
- Class-of-service (CoS) unknown to MPLS without DiffServ - Combining enables resource reservation with CoS granularity Provide fault-tolerance properties of MPLS at a per-CoS level

Reminder:

E-LSP (EXP-inferred LSP): map EXP ⇔ DSCP L-LSP (Label-inferred LSP): map EXP+label ⇔ DSCP

DiffServ-TE CSPF and path signaling

- CSPF with DiffServ constraints

 Goal: serve requests like "LSP to destination X, using CT1 at (preemption) priority 3, bandwidth 30 Mbit/s"
 - Available bandwidths per CT must be known for each link
 8 priorities x 8 CTs = 64 values per link ("TE class matrix")
 - Limited to a choice of 8 by the IETF in RFC 4124 for practical reasons
 Must be advertised by IGP; also specified in RFC 4124

Uni Innsbruck Informatik - 29

Uni Innsbruck Informatik - 30

Path signaling

- Class Type (CT) object of RSVP Path message specifies associated CT Only used for CT1 CT7 (CT0 = default when CT object is missing)
- Incremental deployment: nodes which don't understand CT object must reject request
- DiffservTE LSPs can only be established through LSPs which can accordingly serve the request
 Side note: Constraint-based Routing LDP (CR-LDP) was also specified but eventually abandoned by the IETF

Application scenarios

- Voice (delay-sensitive) and data
- DiffServ can assign a priority to voice \Rightarrow queued on its own Still, the voice-queues can grow \Rightarrow delay
- Hence, amount of voice traffic per link should be kept small
 ⇒ CoS becomes a (dynamic, i.e. depending on traffic amount) constraint when using an alternate path in case of failure
- Three classes (e.g. voice, video, data)
- Queue sizes and scheduling policies should be configured for QoS Should be a function of traffic load, which is a function of routing, LSP preemption, FRR.
- \Rightarrow TE should enable fixing relative proportions of each traffic type on links
- Guaranteed bandwidth service and best effort service How to do TE for best effort without violating guaranteed bandwidth service requirements?

Bandwidth constraint models Bandwidth Constraint (BC): percentage of link's bandwidth that CT(s) can take up $% \left(\frac{1}{2}\right) =0$ Maximum allocation model (MAM) - Map one BC to one CT; link bandwidth is divided among CTs Completely isolates $\text{CTs} \Rightarrow \text{LSP}$ priorities between different CTs irrelevant - Disadvantage: inflexible; bandwidth can be wasted Topology on the right: assume all link capacities are 10 Mbit/s, 9 reserved for CT0, 1 for CT1 Establish LSP1, 9Mbit/s, R2-R3, CT0: - Establish LSP2, 1Mbit/s, R1-R3, CT0: -B-C-E (cannot use I-A-E anymore because 0 Mbit/s left for CT0)

Overbooking

- Reserve X Mbit/s for N LSPs along link of capacity X Mbit/s: some bandwidth will remain unused \Rightarrow Overbooking: reserve more than available Several methods
- LSP size overbooking

 reserve lower bandwidth value than the maximum traffic that will be mapped to the LSP

Uni Innsbruck Informatik - 33

Uni Innsbruck Informatik - 33

- Link size overbooking
 Artificially raise max. reservable link bandwidth, work with these values
- Local Overbooking Multipliers (LOM)
 Link size overbooking with different values for different CTs
 (e.g. 3:1 overbooking for CT0 but 1:1 overbooking for CT1)
- Manual BC configuration User specifies bandwidth constraints, can overbook a class

References

Ina Minei, Julian Lucek: "MPLS-Enabled Applications", John Wiley & Sons, 2005, ISBN: 0-470-01453-9

Uni Innsbruck Informatik - 35

 Slides from Dimitri Papadimitriou - Thanks!!!

Protection

- Backup path must reserve bandwidth for the same class type as protected path
 - No problem in 1:1 backup case
 - Facility backup: two options
 - 1. Single backup: all classes mapped onto single backup and treated as best-effort
 - 2. Separate backup per CT: one backup for each class type, admission control of LSPs into appropriate backup based on bandwidth request and class type
- Traffic must be kept within reservation limits
 - Police traffic at network edge (ingress) or use LSP policer (per-CT granularity; drop or mark out-of-profile traffic at head end)
 - Admission control: only admit connections that can be accommodated