

 Egress LER answers with Resv message - Not addressed to ingress but to upstream neighbor

Uni Innsbruck Informatik - 6

RSVP for MPLS: some more details

- · Periodic refresh messages cause significant overhead - "Refresh Reduction Extensions" scheme to reduce this traffic

- (which will do the same)
- This way, the same path is used (IGP does not interfere)
- Content
 - Label Object

- Path and Resv messages sent

periodically

- · Contains label to be used for that section of the LSP
- Record Route Object
 - Similar to Path message

Uni Innsbruck Informatik - 5

D

- e.g. Summary Refresh Extension: refresh multiple RSVP sessions (LSPs) with a single message
- Optional node failure detection mechanism
 - Hello messages periodically exchanged between neighbors
 - Faster than RSVP session timeouts
- Note: no ECMP in RSVP
 - Once traffic has entered an RSVP LSP, there is no splitting and merging of traffic as it can happen with LDP

		Uni Innsbruck Informatik - 7
To RSVP or not to RSVP?		
	LDP	RSVP
Ease of configuration	Very easy (automatic neighbor detection, routing from IGP)	Explicit configuration of the LSPs at the ingress router, must know all routers to which LSPs should be established
Scalability	•State proportional to number of LDP neighbors (fully meshed topology: O(n)) •Keepalive / hello messages for limited number of neighbors (•State proportional to number of LSPs (fully meshed topology: O(n ²))
	sessions	LSPs
	•Forwarding state in core LSRs for all FECs, plus additional labels for resilience or ECMP	•Forwarding state in core LSRs for LSPs traversing ther
Support of Traffic Engineering	No	Yes
Support of Fast Reroute	No	Yes

Uni Innsbruck Informatik - 12

- new address family added for advertising prefix + associated label(s)
- essential for inter-AS MPLS/VPNs
- Benefits of using BGP
 - ability to establish LSPs crossing AS boundaries (e.g. for MPLS-based VPNs having attachment points with multiple providers)
 - BGP is already used; better to add labels to it than to use (and configure) heavyweight RSVP between AS in addition to it
 - plenty of protocol capabilities automatically reused: filtering routing information, controlling the selection of exit points, loop prevention, ...

Traffic Engineering

- Answer: LSP priorities
 - More important LSPs can preempt less important LSPs (use their resources)
 - 8 priority levels (0 = best, 7 = worst)
 - Setup priority: controls access to resources when establishing LSP
 - Hold priority: controls access to resources for established LSP
 - Preemption: check: setup priority of new LSP > hold priority of existing LSP?
- How to set these priorities by default?
 - High hold priority, low set priority: stable network (no preemption)
 - High set priority, low hold priority: can lead to oscillations
 - Most implementations therefore disallow setting hold < setup for one LSP
- Often, long LSPs are given better priorities than short ones
 - Short LSPs: better chance of finding the necessary resources over an alternate path

- Possible constraints
 - Link properties: bandwidth, administrative attributes ("colors" e.g. for avoiding high-latency or unstable links), \ldots
 - LSP properties: max. number of hops, LSP setup priority, ...
- Consider application scenario 2: I must know about small B-C capacity \Rightarrow information must be advertised throughout the network
- Done by adding TE-specific extensions to IGP: IS-IS and OSPF

 - In addition to link up/down, advertise bandwidth + "colors" Information stored in Traffic Engineering Database (TED) on each router
 - When to send updates?
 - Standard 30 second interval may not be enough
 - Signaling every change (e.g. available bandwidth) may be too much Only signal upon significant changes
 - \Rightarrow trade-off between TED accuracy and overhead

- Upon failure, head end recomputes path
 - If TED still outdated: same result as before, reservation will fail again
 - IETF standards foresee no solution to this problem
 - Practical solutions:
 - Exclude the link from CSPF computation for a while ⇒ simple, localized to head end, but TED is not updated, failure propagates
 - 2. Announce admission control failure via IGP, regardless of throttling mechanism (which should reduce flooding load)
 - \Rightarrow does not have problem above, but
 - 1. computation must happen after delay (make sure TED is up to date)
 - 2. relies on help from a downstream node which may not implement the same behavior (no standard)
 - 3. generates extra flooding traffic
 - ... and they can be combined.

- Switching must happen without traffic loss
- This is done by
 - first setting up new LSP
 - then tearing down old one
 - then shifting traffic
- This means that both paths must be kept for a while
 - reserve twice the resources? Likely to fail
 - Let these two paths LSPs share the resources they reserve
 - LSRs must be informed: shared explicit reservation style in RSVP

