Uni Innsbruck Informatik - 1

Internet Technology

The "inner network" view, part 2: MPLS

Michael Welzl <u>http://www.welzl.at</u>

DPS NSG Team <u>http://dps.uibk.ac.at/nsq</u> Institute of Computer Science University of Innsbruck, Austria

MPLS tunnels

- Efficient tunneling is the key functionality of MPLS
 - Tool for efficiently connecting edges
- Essentially, MPLS adds connection orientation to IP! (and as such, has a clear control plane / data plane separation)
 - Yes, connection oriented IP goes against some fundamental principles
 - So many people hated it, and there were long and heated debates
 - In the end, the market gave MPLS the thumbs up
- Some features of MPLS tunnes:
 - Traffic can be explicitly routed
 - Recursion: build tunnels inside tunnels inside tunnels
 - Protection against data spoofing (only the head of a tunnel can inject data into a tunnel)
 - Low encapsulation overhead

- - Customers of an ISP are given the impression of sharing a LAN
- Network convergence: save money by connecting services from distinct networks instead of building a new network
 - e.g. Public Switched Telephone Network (PSTN) + Internet + ATM + Digital TV...

 \Rightarrow MPLS = Key enabling technology for many things, not just TE!

- RFC 3032: "The ethertype value 8847 hex is used to indicate that a frame is

carrying an MPLS unicast packet."

- Such a field does not exist in the label so how to detect the network layer protocol (e.g. IPv4 vs. IPv6)?
 - Configuration: associate label values with network layer protocol or use it only for one protocol (e.g. only IPv4 everywhere)

MPLS details

- Label designed for speed:
 - 32 bit
 - S=1: "this is the last label"
 - TTL is the only IP header field that must be treated at each hop
- Normal operation: one label per link
 - Ingress LER
 - identifies egress LER + corresponding LSP
 - applies label value corresponding to LSP (push)
 - Next routers along LSP
 - performs lookup of label
 - determines and applies output label (swap)
 - Egress LER
 - removes label, forwards as a normal IP packet

- Why stack labels?
 - Create LSP tunnel within LSP
 - e.g. to differentiate between two VPNs:
 - use inner label to identify service
 - use outer label to quickly send packets through ignorant routers (where differentiation is unnecessary)

- PHB must be determined via label
 - EXP(erimental) bits
- Two methods
 - E-LSP (EXP-inferred LSP): map EXP \Leftrightarrow DSCP
 - Up to 8 different PHBs possible
 - Packets requiring different PHBs transmitted on same LSP (but different queues)
 - Not signaled when establishing LSP, but statically configured
 - L-LSP (Label-inferred LSP): map EXP+label \Leftrightarrow DSCP
 - PHB number not limited by MPLS
 - Possible to use different LSPs for different PHBs
 - Must be signaled when establishing LSP (as labels are tied to LSP)

- Encoding begins with TL, length of this field known
- V content and size can vary
- TLVs facilitate
 - adding new capabilities (define new type)
 - skipping unknown objects (just look at TL, ignore V)
- Side note: penultimate hop popping requested by egress LER by advertising "implicit-null" label (special defined value 3), which means "just pop, please"

- LSRs assign a label to each FEC
- Upstream LSRs request labels to downstream neighbours
- Downstream LSRs distribute labels upon request
- Disadvantage: after LDP-IGP synchronization problem, LSR can only be repaired when a new request was satisfied
 - Significant delay

- May allow more rapid adaptation to routing changes
- Requires an LSR to maintain many labels
- Restricts adaptation to changes in routing
- Few labels must be maintained

Label retention method trades off between label capacity and speed of adaptation to routing changes

Uni Innsbruck Informatik - 19

Ordered vs. Independent LSP Control

Ordered

- LSR only binds a label to a particular FEC if it is the egress LSR for that FEC, or if it has already received a label binding for that FEC from its next hop for that FEC
- Ordered LSP setup may be initiated either by the ingress or the egress

Independent

- Each LSR, upon noting that it recognizes a particular FEC, makes an independent decision to bind a label to that FEC and to distribute that binding to its label distribution peers
- Communicate FEC label binding to peers once next-hop has been recognized
- LSP is formed as incoming and outgoing labels are spliced together
- Both methods supported in the standard and fully interoperable
- Both have their pro's and con's ...

- Labels can be exchanged with less delay
- Does not depend on availability of egress node
- Granularity may not be consistent across the nodes at the start
- May require separate loop detection/mitigation method
- E.g. consider routing change:
 - Ordered control: labels must propagate to routers in the new IGP path
 - But can be sent along with IGP messages themselves
 - Independent control: labels are already there

- Reliance on IGP
 - Has its good and bad sides...
- Liberal label retention and downstream unsolicited label distribution
 - Labels are advertised to all peers and kept by peers even if they are not actively used for forwarding \Rightarrow LDP can quickly react to routing changes
 - Alternative: Equal Cost Multi-Path (ECMP) multiple forwarding table entries for load balancing