Uni Innsbruck Informatik - 1

Internet Technology

Internet Transport Tomorrow

Michael Welzl http://www.welzl.at
DPS NSG Team http://dps.uibk.ac.at/nsg

Institute of Computer Science
University of Innsbruck, Austria

Uni Innsbruck Informatik - 2

Outline

Note: only layer 4 TCP/IP technology
NOT layers below with all their influential factors!

1. Internet transport today: too much, or not enough

2. Internet transport tomorrow
1. SCTP
2. UDP-Lite
3. DCCP

Uni Innsbruck Informatik - 3
Transport layer problem statement

= Efficient transmission of data streams across the Internet
- various sources, various destinations, various types of streams

= What is “efficient?
- terms: latency, end2end delay, jitter, bandwidth
(nominal/available/bottleneck -), throughput, goodput, loss ratio, ..
- general goals: high throughput (bits / second), low delay, jitter, loss ratio

= Note: Internet = TCP/IP based world-wide network
- no assumptions about lower layers!
- ignore CSMA/CD, CSMA/CA, token ring, baseband encoding, frame
overhead, switches, etc. etc. !

Uni Innsbruck Informatik - 4
Internet transport today: one size fits all

= UDP used for sporadic messages (DNS) and some special apps

« TCP used for everything else
- in 2003, approximately 83 % according to:
Marina Fomenkov, Ken Keys, David Moore and k claffy, “Longitudinal study
of Internet traffic in 1998-2003", CAIDA technical report, available from
http://www.caida.org/outreach/papers/2003/nlanr/

- backbone measurement from 2000 said 98% = UDP usage growing

= Original Internet proposition:
IP over everything, everything over IP

« Today‘s reality:
IP over everything, almost everything over TCP, and the rest over UDP

Uni Innsbruck Informatik - 5

What TCP does for you (roughly)

UDP features: multiplexing + protection against corruption

- ports, checksum
stream-based in-order delivery

- segments are ordered according to sequence numbers

- only consecutive bytes are delivered

reliability

- missing segments are detected (ACK is missing) and retransmitted
flow control

- receiver is protected against overload (window based)
congestion control

- network is protected against overload (window based)

- protocol tries to fill available capacity

- explicit establishment + teardown _
full-duplex communication

connection handling
- e.g., an ACK can be a data segment at the same time (piggybacking)

Uni Innsbruck Informatik - 6

UDP, however...

Source port | Destination port

UDP length | UDP checksum

 RFC 768: three pages!

= |P + 2 features:
- Multiplexing (ports)
- Checksum

= Used by apps which want unreliable, timely delivery
- e.g. VolP: significant delay = ® ... but some noise = ©

= No congestion control
- fine for SNMP, DNS, ..

Uni Innsbruck Informatik - 7

TCP vs. UDP: a simple simulation example

T =)
|
sy e T LT Reny T

Uni Innsbruck Informatik - 8

It doesn‘t look good

10tep -1 cbr - drop tail 100 tcp - 1 cbr - drop tail
1400000 1400000
1200000 i 1200000
1000000 1000000
00000 oo W
00000 600000
00000 400000
200000 200000
e M el 0
200000 200000

« For more details, see:
Promoting the Use of End-to-End Congestion Control in the Internet.
Floyd, S., and Fall, K..
IEEE/ACM Transactions on Networking, August 1999.

Uni Innsbruck Informatik -

0|

Real behavior of today‘s apps

Pl Application traffic

TS

Background traffic

19116812

Lister Werhsianen
PC4

Monitor 1 Monitor 2

Uni Innsbruck Informatik - 10
TCP (the way it should be)

Throughput TCP

server send —o—
client receive —+—

Throughput [KByte/s]

1 traffic start at 30 60 traffic end at 90 120

Time [sec]

Uni Innsbruck Informatik - 11

Streaming Video: RealPlayer

Throughput
200

server send —e—
client receive —+—

Throughput [KByte/s]

1 traffic start at 30 60 traffic end at 90 120

Time [sec]

Uni Innsbruck Informatik - 12

Streaming Video: Windows Media Player

Throughput
200
Server send —o—
client receive —+—
150
100

Throughput [KByte/s]

by Iy
%ﬁﬂ#ﬂ&}% ;f#ﬁwﬁmg

1 traffic start at 30 60 traffic end at 90 120

Time [sec]

Streaming Video: Quicktime

Throughput
200

Uni Innsbruck Informatik - 13

Throughput [KByte/s]

server send —o—
client receive —+—

1 traffic start at 30 60

Time [sec]

traffic end at 90 120

Uni Innsbruck Informatik - 14
Throughput
25
server send ——
client receive —+—
i
20 T
o) a
3
2
X,
s
2
£
5
Ei
3
£
S
5
0
1 traffic start at 30 60 traffic end at 90 120

Time [sec]

VolP: Skype

Uni Innsbruck Informatik - 15

Video conferencing: iVisit

Throughput

Uni Innsbruck Informatik - 16

Throughput [KBytels]

server send —o—
client receive —+—

Throughput
25
server send —o—
client receive ——
20
z
@
% 15
X
5
2
£
g 10
3
£ I
£ i
P
0
1 traffic start at 30 60 traffic end at 90 120
Time [sec]
Uni Innsbruck Informatik - 17

= Several other applications examined

- ICQ, NetMeeting, AOL Instant Messenger, Roger Wilco, Jedi Knight II,
Battlefield 1942, FIFA Football 2004, MotoGP2

= Often: congestion = increase rate
- is this FEC?

- often: rate increased by increasing packet size
- note: packet size limits measurement granularity

= Many are unreactive

- Some have quite a low rate, esp. VolP and games

= Aggregate of unreactive low-rate flows = dangerous!
- 1AB Concerns Regarding Congestion Control for Voice Traffic

in the Internet [RFC 3714]

P |
Uni Innsbruck Informatik - 18
Conclusion

= TCP = too much
- TCP++ (or rather TCP--) needed

= UDP = not enough
- UDP++ needed

= We will see that, in fact, sometimes, even UDP = too much

- UDP-- needed

« These gaps are filled by the new IETF transport protocols

- TCP++ =sCTP
- UDP++ = DCCP
- UDP-- = UDP-Lite

Uni Innsbruck Informatik - 19

Stream Control Transmission Protocol (SCTP)

Uni Innsbruck Informatik - 20

Motivation

= TCP, UDP do not satisfy all application needs

* SCTP evolved from work on IP telephony signaling
- Proposed IETF standard (RFC 2960)
- Like TCP, it provides reliable, full-duplex connections

- Unlike TCP and UDP, it offers new delivery options that are particularly
desirable for telephony signaling and multimedia applications

= TCP + features
- Congestion control similar; some optional mechanisms mandatory
- Two basic types of enhancements:
« performance
= robustness

Uni Innsbruck Informatik - 21

Overview of services and features -

= Services/Features SCTP TCP ubpP
= Full-duplex data transmission yes yes yes
= Connection-oriented yes yes no
= Reliable data transfer yes yes no
= Unreliable data transfer yes no yes
= Partially reliable data transfer yes no no
= Ordered data delivery yes yes no
= Unordered data delivery yes no yes
= Flow and Congestion Control yes yes no
« ECN support yes yes no
= Selective acks yes yes no
= Preservation of message boundaries yes no yes
- PMTUD yes yes no
= Application data fragmentation yes yes no
« Multistreaming yes no no
« Multihoming yes no no
= Protection agains SYN flooding attack yes no n/a
= Half-closed connections no yes n/a

Uni Innsbruck Informatik - 22
Packet format

= Unlike TCP, SCTP provides message-oriented data delivery service
- key enabler for performance enhancements

= Common header; three basic functions:
- Source and destination ports together with the IP addresses
- Verification tag
- Checksum: CRC-32 instead of Adler-32

= followed by one or more chunks
- chunk header that identifies length, type, and any special flags
concatenated building blocks containg either control or data information
control chunks transfer information needed for association (connection)
functionality and data chunks carry application layer data.
- Current spec: 14 different Control Chunks for association establishment,
termination, ACK, destination failure recovery, ECN, and error reporting

= Packet can contain several different chunk types
= SCTP is extensible

Uni Innsbruck Informatik - 23
Performance enhancements

= Decoupling of reliable and ordered delivery
- Unordered delivery: eliminate head-of-line blocking delay

RTINS Chunk 2 Chunk 3 Chunk 4 Chunk 1

App waits in vain! =)
= Application Level Framing

= Support for multiple data streams (per-stream ordered delivery)
- Stream sequence number (SSN) preserves order within streams
- no order preserved between streams
- per-stream flow control, per-association congestion control

Uni Innsbruck Informatik - 24

Application Level Framing

TCP: byte stream oriented protocol
Application may want logical data units (“chunks*)

Byte stream inefficient when packets are lost

Packet 1 Packet 2 Packet 3 Packet 4

ALF: app chooses packet size = chunk size

packet 2 lost: no unnecessary data in packet 1,
use chunks 3 and 4 before retrans. 2 arrives

1 ADU (Application Data Unit) = multiple chunks -> ALF still more efficient!

Uni Innsbruck Informatik - 25

Multiple Data Streams

= Application may use multiple logical data streams
- e.g. pictures in a web browser
= Common solution: multiple TCP connections
- separate flow / congestion control, overhead (connection setup/teardown, ..)

App stream 1

B Chunk 1 Chunk 2 Chunk 3_Chunk 4

Chunk 1 ' Chunk 1 Chunk 2 | Chunk 2

TCP sender

App stream 2

Chunk 1 | Chunk 2 Chunk 2 | Chunk 1
S| 2
B App 1 waits in vain!

TCP receiver

Uni Innsbruck Informatik - 26
Multihoming

...at transport layer! (i.e. transparent for apps, such as FTP)

TCP connection ¢ SCTP association
- 2 IP addresses, 2 port numbers ¢ 2 sets of IP addresses, 2 port numbers

Goal: robustness
- automatically switch hosts upon failure
- eliminates effect of long routing reconvergence time

TCP: no guarantee for “keepalive* messages when connection idle
SCTP monitors each destination’s reachability via ACKs of

- data chunks

- heartbeat chunks

Note: SCTP uses multihoming for redundancy, not for load balancing!

Uni Innsbruck Informatik - 27

Association phases

= Association establishment: 4-way handshake
- Host A sends INIT chunk to Host B
- Host B returns INIT-ACK containing a cookis
= information that only Host B can verify
= No memory is allocated at this point!

- Host A replies with COOKIE-ECHO chunk; may contain A's first data.
- Host B checks validity of cookie; association is established

= Data transfer

- SCTP assigns each chunk a unique Transmission Sequence Number (TSN)
SCTP peers exchange starting TSN values during association establishment phase
Message oriented data delivery; fragmented if larger than destination path MTU
- Can bundle messages < path MTU into a single packet and unbundle at receiver
reliability through acks, retransmissions, and end-to-end checksum

= Association shutdown: 3-way handshake
- SHUTDOWN = SHUTDOWN-ACK => SHUTDOWN-COMPLETE
- Does not allow half-closed connections
(i.e. one end shuts down while the other end continues sending new data)

Uni Innsbruck Informatik - 28

UDP-Lite

Uni Innsbruck Informatik - 29

UDP-Lite

Source port Dastination port

Checksum coverage UDP checksum

Checksum: Adler-32 covering the whole packet
- UDP: checksum field = 0 = no checksum at all - bad idea!

solution: UDP-Lite (length := checksum coverage)
- e.g. video codecs can cope with bit errors, but UDP throws whole packet away!
acceptable BER up to applications (complies with end-to-end arguments)
- some data can be covered by checksum
apps can realize several or different checksums

Issues:
- apps can depend on lower layers (no more “IP over everything)
- authentication requires data integrity - not given with UDP-Lite
- handing over corrupt data is not always efficient - link layer should detect UDP-Lite

Uni Innsbruck Informatik - 30
Link layer ARQ

= Advantages:
- potentially faster than end-to-end retransmits
- operates on frames, not packets
- could use knowledge that is not available at transport end points

= example scenario: control loop 1 much shorter than 2

) e

Uni Innsbruck Informatik - 31

Link Layer ARQ /2

= Disadvantages:

- hides information (known corruption) from end points

- TCP: increased delay = more conservative behavior
= Link layer ARQ can have varying degrees of persistence
= So what?

« Ideal choice would depend on individual end-to-end flows

= Thus, recommendation:
- low persistence or disable (leave severe cases up to end points)

- Give end points means to react properly (detect corruption)

Uni Innsbruck Informatik - 32

Datagram Congestion Control Protocol (DCCP)

Uni Innsbruck Informatik - 33

Motivation

= Some apps want unreliable, timely delivery
- e.g. VolP: significant delay = ® ... but some noise = ©

= UDP: no congestion control

= Unresponsive long-lived applications
- endanger others (congestion collapse)
- may hinder themselves (queuing delay, loss, ..)

= Implementing congestion control is difficult
- illustrated by lots of faulty TCP implementations
- may require precise timers; should be placed in kernel

Uni Innsbruck Informatik - 34

DCCP fundamentals
= Congestion control for unreliable communication
- in the OS, where it belongs
« Well-defined framework for [TCP-friendly] mechanisms
= Roughly:

DCCP = TCP - (bytestream semantics, reliability)
= UDP + (congestion control with ECN, handshakes, ACKs)

= Main specification does not contain congestion control mechanisms
- CCID definitions (e.g. TCP-like, TFRC, TFRC for VolIP)

= |ETF status: working group, several Internet-drafts, thorough review
- RFCs published in March 2006

Uni Innsbruck Informatik - 35
What DCCP does for you (roughly)

= Multiplexing + protection against corruption
- ports, checksum (UDP-Lite ++)

Connection setup and teardown
- even though unreliable! one reason: middlebox traversal

Feature negotiation mechanism
- Features are variables such as CCID (“Congestion Control ID*)

Reliable ACKs = knowledge about congestion on ACK path
- ACKs have sequence numbers
- ACKs are transmitted (receiver) until ACKed by sender (ACKs of ACKs)

Full duplex communication
- Each sender/receiver pair is a half-connection; can even use different CCIDs!

Some security mechanisms, several options

Uni Innsbruck Informatik - 36

Packet format

2 Variants; different sequence no. length, detection via X flag

Source Port Destination Port
Data Difset ccVal | CsCov. Checksun
X
Res | Type |: Reserved Sequence Number (high bits)
1

Sequence Number (lov bits)

Source Port | Destination Port
Data Dffset CCVal | OsCov | Checksum
X
Res Type ‘: Sequence Number (low bits)
o

« Generic header with 4-bit type field
- indicates follwing subheader
- only one subheader per packet, not several as with SCTP chunks

Uni Innsbruck Informatik - 37
Separate header / payload checksums

= Available as “Data Checksum option* in DCCP
- Also suggested for TCP, but not (yet?) accepted
- Note: partial checksums useless in TCP (reliable transmission of erroneous data?)

Differentiate corruption / congestion
- Checksum covers all
= Error could be in header
= Impossible to notify sender (seqno, ports, ..)
- Checksum fails in header only
= Bad luck
- Checksum fails in payload only, ECN = 0
« Inform sender of corruption
= No need to react as if congestion
« Still react (keeping high rate + high BER = bad idea) = experimental!
- Checksum fails in payload only, ECN = 1
« Clear sign of congestion

Uni Innsbruck Informatik - 38

Additional options

Data Dropped: indicate differentdrop events in receiver
(differentiate: not received by app / not received by stack)
- removed from buffer because receiver is too slow
- received but unusable because corrupt (Data Checksum option)

Slow receiver: simple flow control

ACK vector: SACK (runlength encoded)

Init Cookie: protection against SYN floods

Timestamp, Elapsed Time: RTT estimation aids

Mandatory: next option must be supported

Feature negotiation: Change L/R, Confirm L/R

Uni Innsbruck Informatik - 39
Classifying DCCP applications

= Congestion control trade-off (selfish single-flow view):
+ reduced loss
— necessary to adapt rate
Trade-off: sender

Use sender bu_ffer, \drann it with varying rate puffer size (=delay)
- Change encoding ~ vs. frequency of
~

encoding changes

~
~
~
~
~
~
~
~
h S
Streaming Media
Sweet spot?
>
>
Delay sensitive Delay insensitive

Uni Innsbruck Informatik - 40

Is TCP the ideal protocol for one-way
streaming media?

Perhaps! Let‘s consider what happens...
Remember: we‘re at the “buffering side of the spectrum
- Buffers (delay) don‘t matter
- User perception studies of adaptive multimedia apps have shown that users
dislike permanent encoding changes (big surprise :-))

= no need for a smooth rate!
Little loss case: TCP retransmissions won‘t hurt
Heavy loss case:

TCP: (assume window =3): 1, 2, 3, 2, 3, 4, 3 4.
- Application would detect: 4 out of 10 expected packets arrived
= should reduce rate
- Isreceiving 1, 4, 7, 10 instead of 1, 2, 3, 4 really such a big benefit?
« Or is it just a matter of properly reacting?
« In RealPlayer and MediaPlayer, TCP can be used for streaming...
seems to work well (also in YouTube!)

Uni Innsbruck Informatik - 41

DCCP usage: incentive considerations

= Benefits from DCCP (perspective of a single application) limited

= Compare them with reasons not to use DCCP
- programming effort, especially if updating a working application
- common deployment problems of new protocol with firewalls etc.

= What if dramatically better performance is required to convince app
programmers to use it?

= Can be attained using “penalty boxes* - but:
- requires such boxes to be widely used

will only happen if beneficial for ISP:
financial loss from unresponsive UDP traffic > financial loss from customers whose
UDP application doesn't work anymore

requires many applications to use DCCP

chicken-egg problem!

Uni Innsbruck Informatik - 42

References

Michael Welzl: “Network Congestion Control: Managing Internet Traffic*,
John Wiley & Sons, July 2005.

Randall R. Stewart, Qiaobing Xie: “Stream Control Transmission Protocols
(SCTP)“, Addison-Wesley Professional 2002.

Key RFCs (main protocol specifications):
- SCTP: RFC 2960; UDP-Lite: RFC 3828; DCCP: RFC 4340

Recommended URLs:
- SCTP, UDP-Lite:
« http://www.ietf.org/html.charters/tsvwg-charter.html
— SCTR:
« http://www.sctp.org/
« http://tdrwww.exp-math.uni-essen.de/inhalt/forschung/sctp_fb/
- DCCP:
« http://www.ietf.org/html.charters/dccp-charter.html
« http://www.icir.org/kohler/dccp/

