

DPS NSG Team http://dps.uibk.ac.at/nsg Institute of Computer Science University of Innsbruck, Austria

Outline

Note: only layer 4 TCP/IP technology NOT layers below with all their influential factors!

1. Internet transport today: too much, or not enough

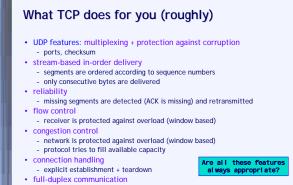
Uni Innsbruck Inform

Jni Innsbruck Informatik - 4

- 2. Internet transport tomorrow 1. SCTP
 - 2. UDP-Lite
 - 3. DCCP

Transport layer problem statement

- · Efficient transmission of data streams across the Internet - various sources, various destinations, various types of streams
- What is "efficient"?
- terms: latency, end2end delay, jitter, bandwidth (nominal/available/bottleneck -), throughput, goodput, loss ratio, ...
 general goals: high throughput (bits / second), low delay, jitter, loss ratio

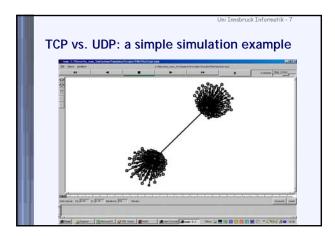

Uni Innsbruck Informa

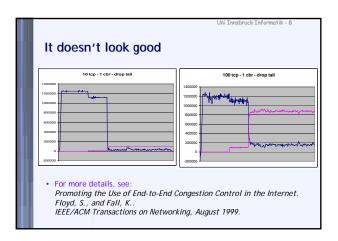
Uni Innsbruck Informatik - 5

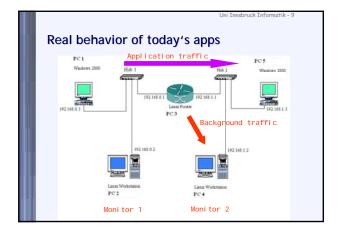
- Note: Internet = TCP/IP based world-wide network
 - ignore CSMA/CD, CSMA/CA, token ring, baseband encoding, frame overhead, switches, etc. etc. !

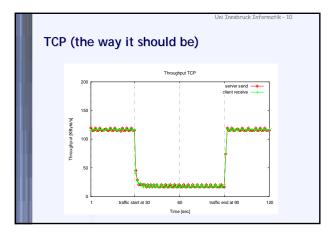
Internet transport today: one size fits all

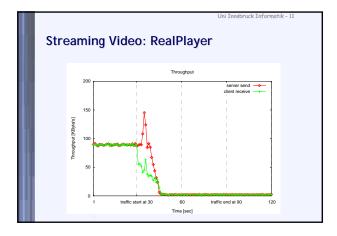
- UDP used for sporadic messages (DNS) and some special apps
- TCP used for everything else in 2003, approximately 83 % according to: Marina Fomenkov, Ken Keys, David Moore and k claffy, "Longitudinal study of Internet traffic in 1998-2003", CAIDA technical report, available from http://www.caida.org/outreach/papers/2003/nlanr/
- backbone measurement from 2000 said 98% ⇒ UDP usage growing
- Original Internet proposition: IP over everything, everything over IP
- Today's reality:
 IP over everything, almost everything over TCP, and the rest over UDP

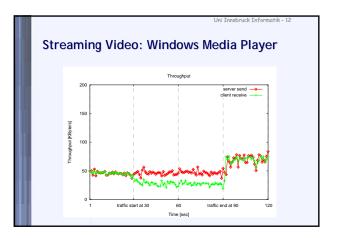

- e.g., an ACK can be a data segment at the same time (piggybacking)

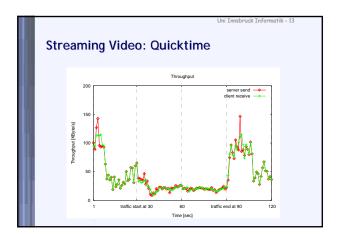

Uni Innsbruck Informatik - 6 UDP, however...

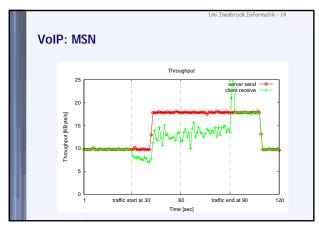

Source port UDP length	UDP checksum
• RFC 768: three pages!	
 IP + 2 features: Multiplexing (ports) Checksum 	
 Used by apps which want unreliable, - e.g. VolP: significant delay = [®] but 	

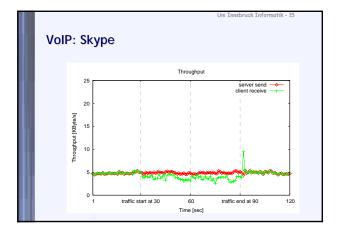

No congestion control

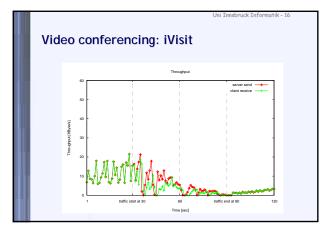

 fine for SNMP, DNS, .

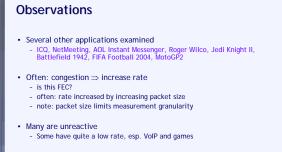






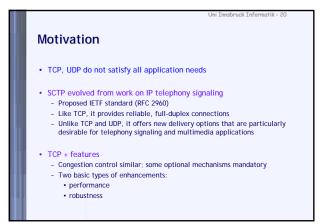




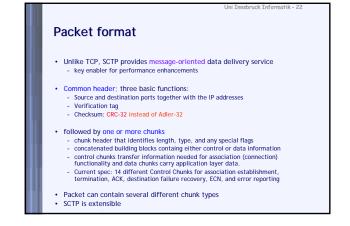


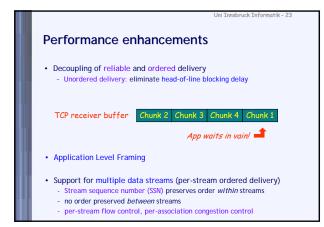
Uni Innsbruck Informatik - 18

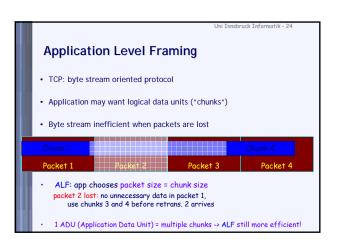
Uni Innsbruck Informatik - 17

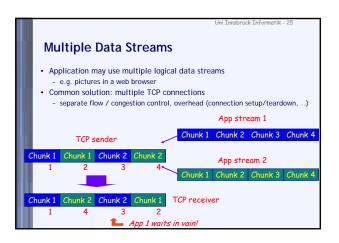

Aggregate of unreactive low-rate flows = dangerous! - IAB Concerns Regarding Congestion Control for Voice Traffic in the Internet [RFC 3714]

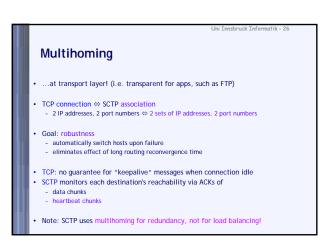
Conclusion

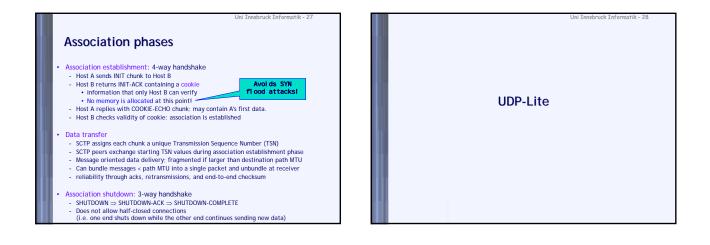

- TCP = too much - TCP++ (or rather TCP--) needed
- UDP = not enough - UDP++ needed
- We will see that, in fact, sometimes, even UDP = too much - UDP-- needed
- These gaps are filled by the new IETF transport protocols
 TCP++ = SCTP
 UDP++ = DCCP

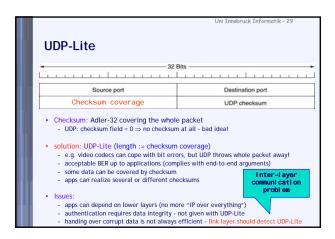

 - UDP--= UDP-Lite

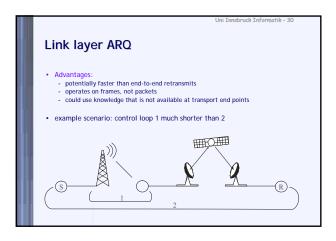





Overview of service	s and	feature	es	SoA TCP + Extras
Services/Features	SCTP	ТСР	UDP	
 Full-duplex data transmission 	yes	yes	yes	
Connection-oriented	yes	yes	no	
Reliable data transfer	yes	yes	no	
Unreliable data transfer	yes	no	yes	
Partially reliable data transfer	yes	no	no	
Ordered data delivery	yes	yes	no	
Unordered data delivery	yes	no	yes	
Flow and Congestion Control	yes	yes	no	
ECN support	yes	yes	no	
Selective acks	yes	yes	no	
Preservation of message boundaries	yes	no	yes	
PMTUD	yes	yes	no	
 Application data fragmentation 	yes	yes	no	
Multistreaming	yes	no	no	
Multihoming	yes	no	no	
Protection agains SYN flooding attack	yes	no	n/a	
 Half-closed connections 	no	yes	n/a	







Link Layer ARQ /2

- Disadvantages;
 - hides information (known corruption) from end points - TCP: increased delay ⇒ more conservative behavior
- · Link layer ARQ can have varying degrees of persistence
- So what?
- Ideal choice would depend on individual end-to-end flows
- Further details RFC 3366 Thus, recommendation; low persistence or disable (leave severe cases up to end points)

Uni Innsbruck Informatik - 3

Uni Innsbruck Informatik

- Give end points means to react properly (detect corruption)

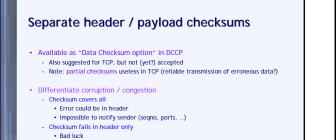
Datagram Congestion Control Protocol (DCCP)

Uni Transbruck Taformatik - 32

Uni Innsbruck Informatik - 34

Motivation

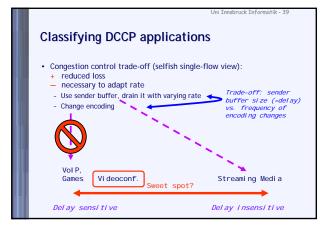
- Some apps want unreliable, timely delivery - e.g. VoIP: significant delay = ⊗ … but some noise = ☺
- UDP: no congestion control
- Unresponsive long-lived applications - endanger others (congestion collapse) - may hinder themselves (queuing delay, loss, ..)
- · Implementing congestion control is difficult illustrated by lots of faulty TCP implementations
 may require precise timers; should be placed in kernel

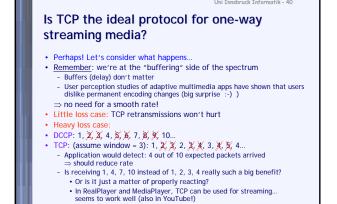

DCCP fundamentals

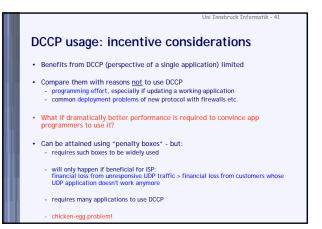
- Congestion control for unreliable communication - in the OS, where it belongs
- Well-defined framework for [TCP-friendly] mechanisms Not an explicit DCCP requirement, but a current IETF requirement
- Roughly:
- DCCP = TCP (bytestream semantics, reliability) = UDP + (congestion control with ECN, handshakes, ACKs)
- Main specification does not contain congestion control mechanisms
 CCID definitions (e.g. TCP-like, TFRC, TFRC for VoIP)
- IETF status: working group, several Internet-drafts, thorough review RFCs published in March 2006

Uni Innsbruck Informatik - 35

	cket			•	Uni Innsbruck Informatik - 36		
2 00			Port.	quenee no	Destination Port		
Dat	a Offset	ur ce	CCVal	CsCov	Checksum		
Res	Туре	X = 1	Reserved		Sequence Number (high bits)		
			Sec	uence Numbe	r (low bits)		
			Dowt		Destination Port		
Source Port Data Offset CCVal		CCVal	CsCov	Checksum			
Res	Туре	Х - 0	Sequence Number (low bits)				
-	indicat	es f	follwing	h 4-bit ty subheader er per pack	· · · · · · · · · · · · · · · · · · ·		


- Checksum fails in payload only, ECN = 0
- Inform sender of corruption
- No need to react as if congestion
 Still react (keeping high rate + high BER = bad idea) ⇒ experimental!
- Checksum fails in payload only, ECN = 1 Clear sign of congestion


Additional options


Data Dropped: indicate different/drop events in receiver (differentiate: not received by ap / not received by stack) - removed from buffer because receiver is too slow - received but unusable because corrupt (Data Checksum option)

Uni Transbruck Tafor

- Slow receiver: simple flow control
- ACK vector: SACK (runlength encoded)
- Init Cookie: protection against SYN floods
- Timestamp, Elapsed Time: RTT estimation aids
- Mandatory: next option must be supported
- Feature negotiation: Change L/R, Confirm L/R

References

Michael Welz1: "Network Congestion Control: Managing Internet Traffic", John Wiley & Sons, July 2005.

Uni Innsbruck Informatik - 42

- Randall R. Stewart, Qiaobing Xie: "Stream Control Transmission Protocols (SCTP)", Addison-Wesley Professional 2002.
- Key RFCs (main protocol specifications): SCTP: RFC 2960; UDP-Lite: RFC 3828; DCCP: RFC 4340 .
- Recommended URLs:
- SCTP, UDP-Lite:
- http://www.ietf.org/html.charters/tsvwg-charter.html
- the first of the second s
- DCCP
- http://www.ietf.org/html.charters/dccp-charter.html
 http://www.icir.org/kohler/dccp/