
Uni Innsbruck Informatik Uni Innsbruck Informatik -- 11

Internet TechnologyInternet Technology

TheThe Transmission Transmission ControlControl ProtocolProtocol ((TCPTCP))

Michael Welzl   Michael Welzl   http://http://www.welzl.atwww.welzl.at

DPSDPS NSGNSG Team Team http://http://dps.uibk.ac.atdps.uibk.ac.at//nsgnsg
Institute of Computer ScienceInstitute of Computer Science
University of Innsbruck, University of Innsbruck, AustriaAustria

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 22

TCPTCP HeaderHeader

• Flags indicate connection setup/teardown, ACK, ..

• If no data: packet is just an ACK

• Window = advertised window from receiver (flow control)
– Field size limits sending rate in today‘s high speed environments; solution:

Window Scaling Option – both sides agree to left-shift the window value by N bit

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 33

TCP Connection ManagementTCP Connection Management

heavy solid line:
normal path for a client

heavy dashed line:
normal path for a server

Light lines:
unusual events

Host 1 Host 2

ACK

 SYN, ACK

SYN

Host 1 Host 2

ACK

FIN

FIN

ACK

Connection
setup teardown

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 44

Error Error ControlControl: : AcknowledgementAcknowledgement

ACK (“positive” Acknowledgement)

Purposes:
– sender: throw away copy of SDU held for retransmit, 
– time-out cancelled
– msg-number can be re-used

TCP counts bytes, not segments; ACK carries “next expected byte“ (#+1)

ACKs are cumulative
– ACK n acknowledges all bytes “last one ACKed” thru n-1

ACKs should be delayed
– TCP ACKs are unreliable: dropping one does not cause much harm
– Enough to send only 1 ACK every 2 segments, or at least 1 ACK every 500 ms

(often set to 200 ms)

data-PDU #0

ACK 1
ACK meaning: received
data-PDU #0 o.k., now

A B

we expect no. 1 next

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 55

Error Error ControlControl: : RetransmitRetransmit TimeoutTimeout ((RTORTO))

• Go-Back-N behavior in response to timeout

• RTO timer value difficult to determine:
– too long ⇒ bad in case of msg-loss!
– too short ⇒ risk of false alarms!
– General consensus: too short is worse than too long; use conservative estimate

• Calculation: measure RTT (Seg# ... ACK#) 

• Original suggestion in RFC 793: Exponentially Weighed Moving Average (EWMA)
– SRTT = (1-α) SRTT + α RTT
– RTO = min(UBOUND, max(LBOUND,

β * SRTT))

• Depending on variation, this RTO may be too small or too large; thus, final 
algorithm includes variation (approximated via mean deviation)
– SRTT = (1-α) SRTT + α RTT
– δ = (1 - β) * δ + β * [SRTT - RTT]
– RTO = SRTT + 4 * δ

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 66

RTORTO calculationcalculation

• Problem: retransmission ambiguity
– Segment #1 sent, no ACK received segment #1 retransmitted
– Incoming ACK #2: cannot distinguish whether original or retransmitted segment #1 

was ACKed
– Thus, cannot reliably calculate RTO!

• Solution [Karn/Partridge]: ignore RTT values from retransmits
– Problem: RTT calculation especially important when loss occurs; sampling

theorem suggests that RTT samples should be taken more often

• Solution: Timestamps option
– Sender writes current time into packet header (option)
– Receiver reflects value
– At sender, when ACK arrives, RTT = (current time) - (value carried in option)

– Problems: additional header space; facilitates NAT detection



Uni Innsbruck Informatik Uni Innsbruck Informatik -- 77

WindowWindow managementmanagement

• Receiver “grants“ credit (receiver window, rwnd)
– sender restricts sent data with window

• Receiver buffer not specified
– i.e.  receiver may buffer reordered segments (i.e. with gaps)

Window

1 2 3 4 5 6 7 80

sent,
not ACKedsent and

acknowledged
must wait until
window moves

can
be sent

9

Sender buffer

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 88

SillySilly WindowWindow Syndrome (SWS)Syndrome (SWS)

• Consider telnet: slow typing =
large header overhead
– Solution: wait until segment is

filled at the sender
(exception: PUSH bit)

– But what about ls <return>?

• Nagle algorithm: sender waits
until SMSS bytes can be sent
– but 1 small segment /RTT allowed
– A TCP implementation must

support disabling Nagle

• Also, receiver mechanism:
slowly reduce rwnd when less than
a segment of incoming data until
window boundary reached

Called „congestion
collapse“ by John 
Nagle in RFC 896

– Note that delayed ACKs also help:
ACK 3 would not have happened

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 99

Congestion Congestion collapsecollapse

Utilization: 2/3

Upgrade to
1 Mbit/s!

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 1010

Global Global congestioncongestion collapsecollapse in in thethe InternetInternet

Craig Partridge, Research Director for the Internet Research Department at 
BBN Technologies:

Bits of the network would fade in and out, but usually only for TCP. You
could ping. You could get a UDP packet through. Telnet and FTP would fail
after a while. And it depended on where you were going (some hosts were
just fine, others flaky) and time of day (I did a lot of work on weekends
in the late 1980s and the network was wonderfully free then).

Around 1pm was bad (I was on the East Coast of the US and you could tell
when those pesky folks on the West Coast decided to start work...).

Another experience was that things broke in unexpected ways - we spent a 
lot of time making sure applications were bullet-proof against failures. 
(..)

Finally, I remember being startled when Van Jacobson first described how
truly awful network performance was in parts of the Berkeley campus. It
was far worse than I was generally seeing. In some sense, I felt we were
lucky that the really bad stuff hit just where Van was there to see it.

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 1111

Internet Internet congestioncongestion controlcontrol: : HistoryHistory

• 1968/69: dawn of the Internet
• 1986: first congestion collapse
• 1988: "Congestion Avoidance and Control" (Jacobson)

Combined congestion/flow control for TCP
(also: variation change to RTO calculation algorithm)

• Goal: stability - in equilibrum, no packet is sent into the network
until an old packet leaves
– ack clocking, “conservation of packets“ principle
– made possible through window based stop+go - behaviour

• Superposition of stable systems = stable
network based on TCP with congestion control = stable

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 1212

TCPTCP Congestion Congestion ControlControl: : TahoeTahoe

• Distinguish:
– flow control: protect receiver against overload

(receiver "grants" a certain amount of data ("receiver window" (rwnd)) )
– congestion control: protect network against overload

("congestion window" (cwnd) limits the rate: min(cwnd,rwnd) used! )

• Flow/Congestion Control combined in TCP. Two basic algorithms:
(window unit: SMSS = Sender Maximum Segment Size, usually adjusted to Path MTU; 
init cwnd<=2 (*SMSS), ssthresh = usually 64k)

• Slow Start: for each ack received, increase cwnd by 1
(exponential growth) until cwnd >= ssthresh

• Congestion Avoidance: each RTT, increase cwnd by at most one segment
(linear growth - "additive increase")

• Timeout: ssthresh = FlightSize/2 (exponential backoff - "multiplicative
decrease"), cwnd = 1; FlightSize = bytes in flight (may be less than cwnd)



Uni Innsbruck Informatik Uni Innsbruck Informatik -- 1313

SlowSlow start and Congestion start and Congestion AvoidanceAvoidance

• Slow start: 3 RTTs for
3 packets = inefficient
for very short
transfers

• Example: HTTP 
Requests

• Thus, initial window
IW = min(4*MSS, 
max(2*MSS, 4380 
byte))

Sender Receiver

1

0

ACK 1

2

ACK 2

ACK 3

4

5

3

.

.

.

Sender Receiver

1

0

ACK 1

2

ACK 2

ACK 3

4

5

3

.

.

.

6

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 1414

Fast Fast RetransmitRetransmit / Fast / Fast RecoveryRecovery (Reno)(Reno)

Reasoning: slow start = restart; assume that network is empty
But even similar incoming ACKs indicate that packets arrive at the receiver!
Thus, slow start reaction = too conservative.

1. Upon reception of third duplicate ACK (DupACK): ssthresh = FlightSize/2

2. Retransmit lost segment (fast retransmit);
cwnd = ssthresh + 3*SMSS
("inflates" cwnd by the number of segments (three) that have left the
network and which the receiver has buffered)

3. For each additional DupACK received: cwnd += SMSS
(inflates cwnd to reflect the additional segment that has left the network)

4. Transmit a segment, if allowed by the new value of cwnd and rwnd

5. Upon reception of ACK that acknowledges new data (“full ACK“):
"deflate" window: cwnd = ssthresh (the value set in step 1)

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 1515

TahoeTahoe vs. Renovs. Reno

Slow Start

Congestion 
Avoidance

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 1616

One One windowwindow, multiple , multiple droppeddropped segmentssegments

• Sender cannot detect loss of 
multiple segments from a single
window

• Insufficient information in DupACKs

• NewReno:
– stay in FR/FR when partial ACK

arrives after DupACKs
– retransmit single segment
– only full ACK ends process

• Important to obtain enough ACKs to 
avoid timeout
– Limited transmit: also send new

segment for first two DupACKs
Sender Receiver

ACK 1

1

 

2

1 2 3 4 5

3

4

5

ACK 1

ACK 1

ACK 1

 
1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

FR / FR

Example: 
ACK 3

Example: 
ACK 6

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 1717

NonNon--CongestionCongestion RobustnessRobustness (NCR)(NCR)

• Assumption: 3 DupACKs clearly indicate loss
– Can be incorrect when packets are reordered

• Reordering is not rare
– And new mechanisms in the network could be devised if TCP was robust 

against reordering (e.g. consider splitting a flow on multiple paths)

• Approach: Increase the number of DupACKs N to approx. 1 cwnd

• Extended Limited Transmit; 2 variants
– Careful Limited Transmit: send 1 new packet for every other DupACK

until N is reached (halve sending rate, but send new data for a while)
– Aggressive Limited Transmit: send 1 new packet for every DupACK until N 

is reached (delay halving sending rate)
– Full ACK ends process

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 1818

SelectiveSelective ACKnowledgementsACKnowledgements (SACK)(SACK)

• Example on previous slide: send ACK 1, SACK 3, SACK 5 in response to segment #4

• Better sender reaction possible
– Reno and NewReno can only retransmit a single segment per window
– SACK can retransmit more (RFC 3517 – maintain scoreboard, pipe variable)
– Particularly advantageous when window is large (long fat pipes)

• but: requires receiver code change

• Extension: DSACK informs the sender of duplicate arrivals



Uni Innsbruck Informatik Uni Innsbruck Informatik -- 1919

SpuriousSpurious timeoutstimeouts

• Common occurrence in wireless
scenarios (handover): sudden
delay spike

• Can lead to timeout
slow start

– But: underlying assumption: 
“pipe empty“ is wrong!
(“spurious timeout“)

– Old incoming ACK after timeout
should be used to undo the error

• Several methods proposed
Examples:
– Eifel Algorithm: use timestamps

option to check: timestamp in 
ACK < time of timeout?

– DSACK: duplicate arrived
– F-RTO: check for ACKs that

shouldn't arrive after Slow Start

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 2020

AppropriateAppropriate Byte Byte CountingCounting

• Increasing in Congestion Avoidance mode: common implementation
(e.g. Jan’05 FreeBSD code): cwnd += SMSS*SMSS/cwnd for every ACK
(same as cwnd += 1/cwnd if we count segments)
– Problem: e.g. cwnd = 2: 2 + 1/2 + 1/ (2+1/2)) = 2+0.5+0.4 = 2.9

thus, cannot send a new packet after 1 RTT
– Worse with delayed ACKs (cwnd = 2.5)
– Even worse with ACKs for less than 1 segment (consider 1000 1-byte ACKs)

too aggressive!

• Solution: Appropriate Byte Counting (ABC)
– Maintain bytes_acked variable; send segment when threshold exceeded
– Works in Congestion Avoidance; but what about Slow Start?

• Here, ABC + delayed ACKs means that the rate increases in 2*SMSS steps
• If a series of ACKs are dropped, this could be a significant burst (“micro-

burstiness“); thus, limit of 2*SMSS per ACK recommended

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 2121

LimitedLimited SlowSlow Start and Start and cwndcwnd ValidationValidation

• Slow start problems:
– initial ssthresh = constant, not related to real network

this is especially severe when cwnd and ssthresh are very large
• Proposals to initially adjust ssthresh failed: must be quick and precise

– Assume: cwnd and ssthresh are large, and avail.bw. = current window + 1 SMSS/RTT ?
• Next updates (cwnd++ for every ACK) will cause many packet drops

• Solution: Limited Slow Start
– cwnd <= max_ssthresh: normal operation; recommend. max_ssthresh=100 SMSS
– else K = int(cwnd/(0.5*max_ssthresh), cwnd += int(MSS/K)
– More conservative than Slow Start:

for a while cwnd+=MSS/2, then cwnd+=MSS/3, etc.

• Cwnd validation
– What if sender stops, or does not send as much as it could?

• maintain cwnd = wrong if break is long (not related to real network anymore)
• reset = too conservative if break is short
• Solution: slowly decay TCP parameters - cwnd /= 2 every RTT,

ssthresh = between previous and new cwnd

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 2222

MaintainingMaintaining congestioncongestion statestate

• TCP Control Block (TCB): information such as RTO, scoreboard, cwnd, ..

• Related to network path, yet separately stored per TCP connection
– Compare: layering problem of PMTU storage

• TCB interdependence: affects initialization phase
– Temporal sharing: learn from previous connection

(e.g. for consecutive HTTP requests)
– Ensemble sharing: learn from existing connections

here, some information should change -
e.g. cwnd should be cwnd/n,
n = number of connections; but less
aggressive than "old" implementation

• Congestion Manager
– One entity in the OS maintains all the
– congestion control related state
– Used by TCP's and UDP based applications
– Hard to implement, not really used

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 2323

ActiveActive Queue ManagementQueue Management

• Monitor queue, do not only drop upon overflow ⇒ more intelligent decisions

• Goals: eliminate phase effects, manage fairness
("punish" flows that are too aggressive)
– Aggressive flows have more packets in the queue; thus, dropping a random one is

more likely to affect such flows
– Also possible to differentiate traffic via drop function(s)

REDRED RED in "gentle" modeRED in "gentle" mode

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 2424

ExplicitExplicit Congestion Congestion NotificationNotification (ECN)(ECN)
• Explicit Congestion Notification (ECN)

– Instead of dropping, set a bit

• Receiver informs sender about bit; sender behaves as if a packet was dropped
⇒ actual communication between end nodes and the network

• Note: ECN = true congestion signal (i.e. clearly not corruption)

• Typical incentives:
– sender = server; efficiently use connection, fairly distribute bandwidth

• use ECN as it was designed
– receiver = client; goal = high throughput, does not care about others

• ignore ECN flag, do not inform sender about it

• Need to make it impossible for receiver to lie about ECN flag when it was set!
– Solution: nonce = random number from sender, deleted by router when setting ECN
– Sender believes „no congestion“ iff correct nonce is sent back



Uni Innsbruck Informatik Uni Innsbruck Informatik -- 2525

ECNECN in in actionaction

• Nonce provided by bit combination:
– ECT(0): ECT=1, CE=0
– ECT(1): ECT=0, CE=1

• Nonce usage specification still experimental

 

Data packets
 

ACKs  

Send packet with
ECT = 1, CE = 0,
nonce = random

 
ECT = 1, so don’t drop
update: CE = 1
nonce = 0

Set ECE = 1 in
subsequent ACKs
even if CE = 0

Reduce cwnd,
set CWR = 1

Only set ECE = 1
in ACKs again
when CE = 1

Sender Receiver

1 2 3

4 5

 
Congestion

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 2626

TCPTCP HistoryHistory

RFC 793
09 / 1981

RFC 1122
10 / 1989

RFC 1323
05 / 1992

RFC 2883
07 / 2000

RFC 2988
11 / 2000

RFC 2581
04 / 1999

RFC 3042
01 / 2001

RFC 3168
09 / 2001

RFC 3390
10 / 2002

RFC 3782
04 / 2004

RFC 2018
10  / 1996

RFC 3517
04 / 2003

Basics

Slow start + congestion avoidance,
SWS avoidance / Nagle,
RTO calculation, delayed ACK

Timestamps,
PAWS,
Window scaling

SACK

DSACK

ECN

NewReno

Limited Transmit

SACK-based
loss recovery

RTO

Larger initial
window

Full specification of
Slow start,
congestion avoidance,
FR / FR

Standards track TCP RFCs which
influence when a packet is sent

(status: October 2007)

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 2727

ReferencesReferences

• Michael Welzl, "Network Congestion Control: Managing Internet 
Traffic", John Wiley & Sons, Ltd., August 2005, ISBN: 047002528X

• M. Hassan and R. Jain, "High Performance TCP/IP Networking: 
Concepts, Issues, and Solutions", Prentice-Hall, 2003, 
ISBN:0130646342

• M. Duke, R. Braden, W. Eddy, E. Blanton: "A Roadmap for TCP
Specification Documents", RFC 4614, September 2006

• NCR (Extended Limited Transmit): RFC 4653

• http://www.ietf.org/html.charters/tcpm-charter.html

• Which TCP features are used in Windows Vista, and why? See:
http://www3.ietf.org/proceedings/07mar/slides/tsvarea-3/sld1.htm


