

Scope

- Note: only interested in communication related attacks! not: exploitation of OS vulnerabilities (software flaws)! ⇒ assumption: software bug-free :)
- · Examples of attacks based on software flaws: viruses (flaw in email tool, ..), worms (flaw in web servers, ..), rlogin, ...
- Very common attack (related to network programming): Buffer Overflow Assumption 1: (e.g., C) program writes into buffer without proper checks data source: Internet packet content

Uni Innsbruck Informatik -

- Assumption 2: knowledge of OS, compilers, $.. \Rightarrow$ memory layout Idea: write malicious code into buffer, overwrite function return address \Rightarrow make system execute desired code (e.g., shell with root rights)

...thus, be careful with memory operations!

Considerations for Alice and Bob

Confidentiality

- encryption / decryption using private or public keys
- prevent eavesdropping: only sender and receiver should understand

Uni Innsbruck Informatik - 5

Authentication

- ensure correct identity of sender and receiver

- Message integrity and nonrepudiation
 - malicious third person should not have a chance to change the content! - should be possible to prove that message X was sent by sender Y.
- Availability and access control
- Common Denial-of-service (DoS) attacks make a system unavailable

at IETF meetings

Uni Transbruck Taformatik - 19

802.11 security

- Well-known problem: war driving, parking lot attacks
- Wired Equivalent Privacy (WEP) protocol uses symmetric key to - authenticate (128-bit nonce per frame) encrypt (RC4 algorithm; works well iff key is never used more than once!)
- between host and wireless access point
- Does not define key distribution
- · Known to be insecure e.g., WEP key changes too often
- Solution: 802.11i, also called WPA2 (Wireless Protected Access) defines key management using RADIUS authentication servers

DoS attacks DoS: prevent a system from operating properly Logic attacks ess interesting for the 'net - exploit software flaws - examples: Ping-of-Death, WinNuke, - Prevention: upgrade / repair software Flooding attacks - overwhelm CPU, memory, network resources essina over Prevention: very difficult (how to distinguish "good" from "bad" requests?) Typically small packets (most network resources limited by CPU, not bandwidth) - Examples: TCP SYN, TCP ACK, IP fragment, DNS request, .

Uni Innsbruck Informatik - 23

DoS attacks /2

- TCP SYN (and similar) attacks: ember: per-flow state not scalable
- TCP <u>needs</u> per-flow state (connection state, address, port numbers, ...)
 1 SYN packet: search through existing connections + allocate memory

Uni Innsbruck Informatik - 22

Uni Innsbruck Informatik - 24

- TCP SYN attack exploits TCP scalability problem!

Distributed attacks:

- Install remote controlled daemon on "zombie" hosts
 Use more network resources to increase the amount of packets

IP spoofing

- use wrong IP source address
- Variant: "reflector attack":
 source address = innocent 3rd party, 3rd party replies (adds traffic)
 - amplified by broadcast addresses! Examples: smurf, fraggle

Fighting the SYN problem: Cookies SCTP: Association establishment - 4-way handshake - Host A sends INIT chunk to Host B Host B returns INIT-ACK containing a cookie · information that only Host B can verify No memory is allocated at this point! Host A replies with COOKIE-ECHO chunk; may contain A's first data. - Host B checks validity of cookie; association is established TCP: Sequence number negotiated at connection setup - Idea: • do not maintain state after SYN at server · encode cipher in sequence number from server to client - Client must reflect it \Rightarrow check integrity: if okay, generate state from ACK Only requires changes at the server See $\underline{http://cr.yp.to/syncookies.html}$ for further details (how to activate this in Linux,

DoS identification

- Assumption: spoofed source addresses are chosen randomly (true for several known attack tools)
- Victim's responses: equi-probably distributed across the entire Internet address space ("backscatter") Probability of receiving a response: n'm/2*32 (n=number of monitored hosts, m = number of flooding packets)

- $\begin{array}{l} \mbox{Samples contain: victim address, kind of attack (port numbers, packet type), \\ \mbox{timestamp} (\Rightarrow calculate duration), lower limit of attack rate \\ (rate >= backscatter rate * 2^32/n) \end{array}$
- Conservative result from monitoring a LAN ingress link:
- 12805 attacks in 1 week
 - more than 5000 victim IP addresses in more than 2000 domains 50% of attacks with more than 350 packets / s
 - 50 % of attacks from invalid TCP packets (probably TCP SYN)

Firewall trouble

- Typical configuration: block ICMP packets
- Path MTU Discovery
 - set IP "don't fragment" flag
 - start with big packets
 - [gradually] decrease size upon ICMP Destination Unreachable [- Fragmentation Needed] reply
- layer 3 functionality may be initiated from layer 4 TCP problem with arbitrary packet drops
- Path MTU Discovery Black Hole Detection problem: No ICMP messages from unresponsive routers or filtered by firewallshard to detect and solve!

Uni Innsbruck Informat

Uni Innsbruck Informatik - 29

NAT for security

- Actual IETF name: NAPT (Network Address / Port Translator) also known as: masquerading, IP forwarding
- Map local ip addr. / (tcp or udp) port no. pair to globally unique ip address / port no single globally unique ip address can be used by several local hosts at once

Uni Innsbruck Informatik - 28

Uni Innsbruck Informatik - 30

- Some disadvantages (there are more!):
 Problems with specific port numbers
 Hard to set up a server behind a NAT (IP address not visible to the outside)
 - Architecturally critical; problems with many Internet mechanisms (e.g., mobility)
- One disadvantage can also be an advantage: Not visible to the outside = not an easy target for attacks! e.g., problematic for Troyans

Conclusion: security and layers, again

- · Security makes sense and may be required in many layers
- Advantage of security in lower layers: automatically provide security to everything on top
- Advantage of security in upper layers: specific security tied to application
- General question: what is tied to what?
- e.g., WLAN authentication can only bind users to MAC addresses - IPSec authentication can only bind users to IP addresses
- Similarly, SSL cannot solve an ECN security problem

References

DoS

David Moore, Geoffrey M. Voelker & Stefan Savage, "Inferring Internet Denial-of-Service Activity", Proc. 2001 USENIX Security Symposium

Stefan Savage, David Wetherall, Anna Karlin & Tom Anderson, "Network Support for IP Traceback", IEEE/ACM Transactions on Networking Vol. 9, No. 3, June 2001

- Path MTU Discovery / Firewalls: RFC 1191, RFC 2923, RFC 2979 (firewall)
- Everything else: any of the three books that were recommended for the "computer networks" lecture