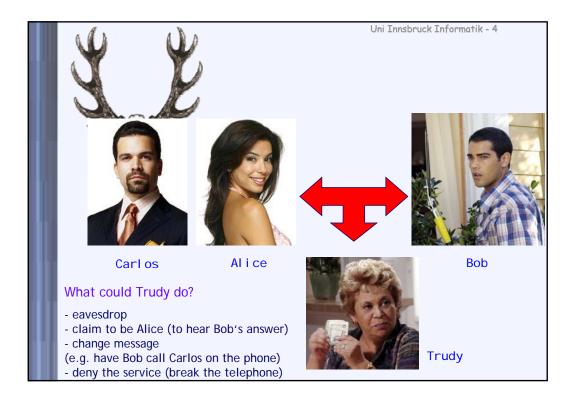
Internet Technology Security

Michael Welzl michael.welzl@uibk.ac.at

DPS NSG Team http://dps.uibk.ac.at/nsq Institute of Computer Science University of Innsbruck, Austria

Uni Innsbruck Informatik - 2


Scope

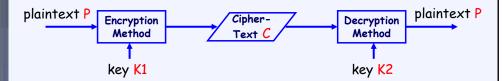
- Note: only interested in communication related attacks!
 - not: exploitation of OS vulnerabilities (software flaws)!
 ⇒ assumption: software bug-free :)
- Examples of attacks based on software flaws:
 - viruses (flaw in email tool, ..), worms (flaw in web servers, ..), rlogin, ..
- Very common attack (related to network programming): Buffer Overflow
 - Assumption 1: (e.g., C) program writes into buffer without proper checks data source: Internet packet content
 - Assumption 2: knowledge of OS, compilers, .. ⇒ memory layout
 - Idea: write malicious code into buffer, overwrite function return address ⇒ make system execute desired code (e.g., shell with root rights)

...thus, be careful with memory operations!

Typical scenario

Considerations for Alice and Bob

- Confidentiality
 - encryption / decryption using private or public keys
 - prevent eavesdropping: only sender and receiver should understand
- Authentication
 - ensure correct identity of sender and receiver
- Message integrity and nonrepudiation
 - malicious third person should not have a chance to change the content!
 - should be possible to prove that message X was sent by sender Y.
- Availability and access control
 - Common Denial-of-service (DoS) attacks make a system unavailable


Uni Innsbruck Informatik - 6

Security and layers

Should? Consider e2e arguments...

- Confidentiality
 - Layer-independent; can be implemented at a very high layer!
 - Consider: packet sniffing common link layer threat (WLAN)
- Authentication
 - relevant at all layers!
 - Consider: IP spoofing (fake source IP address), playback attack (resend sniffed data), man-in-the-middle attack (transparently introduce intermediate system: from A ⇔ B to A ⇔ X ⇔ B X acts like A to B and like B to A) common network layer threats
- Message integrity and nonrepudiation
 - Changing content occurs in transit thus, ideally: network/transport layers
- · Availability and access control
 - Layer-independent

Cryptology

- · Symmetric (private) key system:
 - K1 = K2; known only to sender and receiver
 - e.g. Caesar cipher (shift letters by fixed amount): not so hard to crack; e.g. when word is known to occur or letter occurrence frequency is known
 - Data Encryption Standard (DES): 56 bit common, but failed in a "challenge"
 - Remaining question: how to distribute K?
- Asymmetric (public) key system:
 - K1 public (but associated with receiver, e.g. contained in Bob's email signature)
 - K2 secret (known only to Bob)

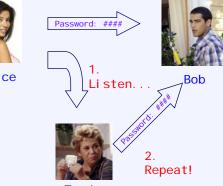
Uni Innsbruck Informatik - 8

Public key encryption/decryption: RSA

RSA (Rivest, Shamir, Adleman):

- choose two large primes, p and q (> 10^{100})
- compute n = p x q, z = (p-1) x (q-1)
- choose e relatively prime to z (i.e. e and z have no common factors)
- find d such that e x d mod z = 1

Simple example:


- p = 3, $q = 11 \Rightarrow n = 33$, z = 20
- then e.g., d = 7 (rel. prime to z = 2x2x5)
- then e.g., $e = 3 (3 \times 7 = 21, 21 \mod 20 = 1)$

Encryption of P: C = P^e (mod n) \Rightarrow public key: (n, e) Decryption of C: P = C^d (mod n) \Rightarrow private key: (n, d)

Intruder must factor n into p, q: said to take 100^{25} years for 500-digit n, while n is only a few hundred bytes.

Authentication

- · Who am I communicating with?
 - phone: recognizing voice helps
 - letter: authentication done via signature
- Need a signature for digital communication!
- · Common: password
- Problem: eavesdropping
 - even encryption cannot prevent playback attack!

Uni Innsbruck Informatik - 10

Authentication /2

- Obvious solution: require password to change with every message
 - e.g., number of cycling passwords, change passwords according to a rule
- Nonce: random number from Bob, must be used in Alice's answer
 - Similar to TCP connection setup (reflected seqno prevents server from mistaking old SYN)
 - e.g., with RSA: Alice could encrypt nonce with her private key, Bob could then decrypt it
 with her public key; If result correct, sender is Alice (only she knows her private key)
 - Requires Bob to retrieve Alice's public key
 - Can be intercepted by Trudy; thus, whole process is only as secure as key exchange
- · Can only be solved by adding a trusted intermediary which distributes keys
 - Certification Authority (CA) certifies that public key belongs to an entity (person)
 - Key Distribution Center (KDC): used for symmetric key systems
 - stores per-person key (e.g. manually configured)
 - Alice uses it to retrieve a one-time session key ("I want to talk to Bob")
 - Well known example: Kerberos authentication service
- CA, KDC must be trustworthy e.g., governmental

Integrity

- Public key encryption for every message is not convenient
 - Problems with RSA method: large result, computationally expensive
 - Desirable: less computational overhead, small fixed size result
- RSA recovers complete message from signature; unnecessary!
 - Proof of sender could just as well use RSA over message checksum only
 - Or calculate a checksum, for that matter...
- Thus, better solution: digital signature digital equivalent of actual signature; uniquely identifies a person
- Goal of checksum is to find errors; goal of signature is to be unique!
 - Solution: message digest, e.g. MD5 (128 bit); quite similar to checksum
 - Note: checksums, message digests are hash functions

Uni Innsbruck Informatik - 12

Security in practice

Example systems

Pretty Good Privacy (PGP)

- Email security solution, invented by Phil Zimmerman 1991
 - famous criminal investigation case by the US government
 - after 3 years, case dropped in 1996
- PGP does it all:
 - symmetric key cryptography
 - public key cryptography
 - digital signature
- · Flexible: choice of algorithms
- Public keys commonly distributed online (sig-file, website)

Also: PGP signing parties, e.g. at IETF meetings

---BEGIN PGP SIGNED MESSAGE--Hash: SHA1

Bob:My husband is out of town
tonight.Passionately yours, Alice

---BEGIN PGP SIGNATURE--Version: PGP 5.0
Charset: noconv
yhHJRHhGJGhgg/12EpJ+lo8gE4vB3mqJhFEvZP9t6n7
G6m5Gw2
---END PGP SIGNATURE---

Uni Innsbruck Informatik - 14

Secure Socket Layer (SSL)

- Developed by Netscape
- · Layered on top of TCP, yet application independent
 - selected by using a specific port; e.g., standard port 443 for HTTP
 - HTTP which uses SSL = HTTPS
- Security services:
 - server authentication (e.g. via predefined trusted CAs in browser)
 - data encryption
 - Browser generates symmetric key
 - encrypts it with server's public key from CA
 - server decrypts symmetric key with private key
 - then, symmetric key is used
 - client authentication (optional, uses client certificates)
- IETF successor: "Transport Layer Security (TLS)"

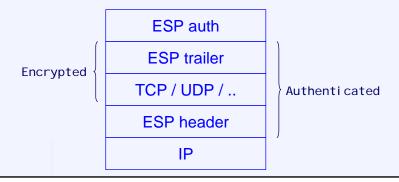
IPsec

- IPSec = protocol *suite* (not a single protocol)
 - provides framework for new encryption or authentication algorithms ⇒ can survive if algorithm is broken!
- Network layer security: automatically affects the whole TCP/IP stack (TCP, UDP, ICMP, SNMP, ..)
- · Authentication + data integrity
 - Authentication Header (AH) protocol
- ... + confidentiality
 - Encapsulation Security Payload (ESP) protocol
 - More complicated (requiring more processing) than AH

Not connectionless anymore!

- For both AH and ESP, source, destination handshake:
 - create Service Agreement (SA): unidirectional network-layer logical channel
 - uniquely identified by: protocol (AH or ESP), source IP address, Security Parameter Index (SPI) (32-bit connection ID)

Uni Innsbruck Informatik - 16


Authentication Header (AH) Protocol

- AH header inserted between IP and transport header (TCP/UDP)
- · Fields:
 - Next Header similar to "Protocol" field in IP header
 - Security Parameter Index (SPI) 32-bit connection ID
 - Sequence Number used to prevent playback and man-in-the-middle attacks
 - Authentication Data variable length field containing a digital signature, computed using the algorithm specified by the SA
- AH authenticates complete packet (also IP header except TTL)

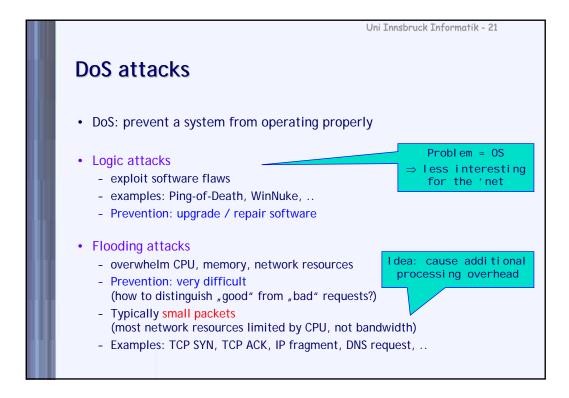
TCP / UDP / ..
AH
IP

Encapsulation Security Payload (ESP) Protocol

- Fields (similar to AH, but different position):
 - ESP header: Security Parameter Index (SPI), Sequence Number similar to AH
 - ESP trailer: Next Header encrypted!
 - ESP auth: Authentication Data

Uni Innsbruck Informatik - 18

More IPsec facts


- Internet Key Exchange (IKE) algorithm
 - default key management protocol for IPsec
- Internet Security Association and Key Management Protocol (ISKMP)
 - definition of procedures for SA setup/teardown
- Tunnel mode
 - transparently deploy IPsec (security gateway machines / firewalls) possibility: bundle TCP connections to hide communicating peers
 - encapsulate / decapsulate complete packet (also IP header)
- IPsec works with IPv4 and IPv6 (AH is extension header in IPv6)
- AH = (roughly) subset of ESP, kept for historical / compatibility reasons
 - note: AH checks IP header!
- · Several additional complex issues: NAT, PMTUD + tunnel mode

802.11 security

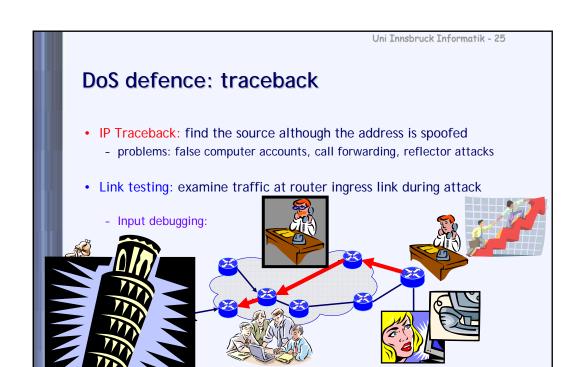
- · Well-known problem: war driving, parking lot attacks
- · Wired Equivalent Privacy (WEP) protocol uses symmetric key to
 - authenticate (128-bit nonce per frame)
 - encrypt (RC4 algorithm; works well **iff** key is never used more than once!) between host and wireless access point
- Does not define key distribution
- Known to be insecure e.g., WEP key changes too often
- Solution: 802.11i, also called WPA2 (Wireless Protected Access)
 - defines key management using RADIUS authentication servers

Uni Innsbruck Informatik - 20

Some other problems

DoS attacks /2

- TCP SYN (and similar) attacks:
 - remember: per-flow state not scalable
 - TCP needs per-flow state (connection state, address, port numbers, ..)
 - 1 SYN packet: search through existing connections + allocate memory
 - TCP SYN attack exploits TCP scalability problem!
- Distributed attacks:
 - Install remote controlled daemon on "zombie" hosts
 - Use more network resources to increase the amount of packets
- IP spoofing:
 - use wrong IP source address
 - Variant: "reflector attack":
 - source address = innocent 3rd party, 3rd party replies (adds traffic)
 - amplified by broadcast addresses! Examples: smurf, fraggle


Fighting the SYN problem: Cookies

- SCTP: Association establishment 4-way handshake
 - Host A sends INIT chunk to Host B
 - Host B returns INIT-ACK containing a cookie
 - · information that only Host B can verify
 - No memory is allocated at this point!
 - Host A replies with COOKIE-ECHO chunk; may contain A's first data.
 - Host B checks validity of cookie; association is established
- · TCP:
 - Sequence number negotiated at connection setup
 - _ Idea
 - do not maintain state after SYN at server
 - encode cipher in sequence number from server to client
 - Client must reflect it ⇒ check integrity; if okay, generate state from ACK
 - Only requires changes at the server
 - See http://cr.yp.to/syncookies.html for further details (how to activate this in Linux, ..)

Uni Innsbruck Informatik - 24

DoS identification

- Assumption: spoofed source addresses are chosen randomly (true for several known attack tools)
 - Victim's responses: equi-probably distributed across the entire Internet address space ("backscatter")
 - Probability of receiving a response: n*m/2^32
 (n=number of monitored hosts, m = number of flooding packets)
- Samples contain: victim address, kind of attack (port numbers, packet type), timestamp (⇒ calculate duration), lower limit of attack rate (rate >= backscatter rate * 2^32/n)
- Conservative result from monitoring a LAN ingress link:
 - 12805 attacks in 1 week
 - more than 5000 victim IP addresses in more than 2000 domains
 - 50% of attacks with more than 350 packets / s
 - 50 % of attacks from invalid TCP packets (probably TCP SYN)

DoS defence: traceback /2

- Problem with Input Debugging: management overhead
- · Controlled Flooding:
 - Flood links, observe DoS traffic perturbations
 - requires participating flooding hosts, good topological Internet map
 - requires no support from network operators!
 - problem: counter a DoS attack with a DoS attack?
- Logging:
 - log all traffic, detect path of flood packets via data mining
 - problem: resource requirements
 - advantage: can be used after attack
- Random marking schemes / ICMP Traceback:
 - very seldom: mark packets / generate packets with path information
 - victim can reconstruct path after the attack

Firewall trouble

- · Typical configuration: block ICMP packets
- · Path MTU Discovery
 - set IP "don't fragment" flag
 - start with big packets
 - [gradually] decrease size upon ICMP Destination Unreachable
 [Fragmentation Needed] reply
- layer 3 functionality may be initiated from layer 4
 - TCP problem with arbitrary packet drops
- Path MTU Discovery Black Hole Detection problem:
 No ICMP messages from unresponsive routers or filtered by firewalls
 hard to detect and solve!

Uni Innsbruck Informatik - 28

NAT for security

- Actual IETF name: NAPT (Network Address / Port Translator)
 - also known as: masquerading, IP forwarding
- Map local ip addr. / (tcp or udp) port no. pair to globally unique ip address / port no.
 - single globally unique ip address can be used by several local hosts at once
- Some disadvantages (there are more!):
 - Problems with specific port numbers
 - Hard to set up a server behind a NAT (IP address not visible to the outside)
 - Architecturally critical; problems with many Internet mechanisms (e.g., mobility)
- One disadvantage can also be an advantage: Not visible to the outside = not an easy target for attacks!
 - e.g., problematic for Troyans

Conclusion: security and layers, again

- Security makes sense and may be required in many layers
- Advantage of security in lower layers: automatically provide security to everything on top
- Advantage of security in upper layers: specific security tied to application
- General question: what is tied to what?
 - e.g., WLAN authentication can only bind users to MAC addresses
 - IPSec authentication can only bind users to IP addresses
 - Similarly, SSL cannot solve an ECN security problem

Uni Innsbruck Informatik - 30

References

DoS:

David Moore, Geoffrey M. Voelker & Stefan Savage, "Inferring Internet Denial-of-Service Activity", Proc. 2001 USENIX Security Symposium

Stefan Savage, David Wetherall, Anna Karlin & Tom Anderson, "Network Support for IP Traceback", IEEE/ACM Transactions on Networking Vol. 9, No. 3, June 2001

- Path MTU Discovery / Firewalls: RFC 1191, RFC 2923, RFC 2979 (firewall)
- Everything else: any of the three books that were recommended for the "computer networks" lecture