
MulTFRC: Providing Weighted Fairness for Multimedia
Applications (and others too!)

Dragana Damjanovic
Institute of Computer Science

University of Innsbruck, Austria
dragana.damjanovic@uibk.ac.at

Michael Welzl
Department of Informatics

University of Oslo
michawe@ifi.uio.no

ABSTRACT
When data transfers to or from a host happen in parallel,
users do not always consider them to have the same im-
portance. Ideally, a transport protocol should therefore al-
low its users to manipulate the fairness among flows in an
almost arbitrary fashion. Since data transfers can also in-
clude real-time media streams which need to keep delay —
and hence buffers — small, the protocol should also have
a smooth sending rate. In an effort to satisfy the above
requirements, we present MulTFRC, a congestion control
mechanism which is based on the TCP-friendly Rate Control
(TFRC) protocol. It emulates the behavior of a number of
TFRC flows while maintaining a smooth sending rate. Our
simulations and a real-life test demonstrate that MulTFRC
performs significantly better than its competitors, poten-
tially making it applicable in a broader range of settings
than what TFRC is normally associated with.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols

General Terms
Design, Algorithms, Experimentation

Keywords
transport protocols, TFRC, TCP-friendliness

1. INTRODUCTION
The TCP protocol is the most common reliable transport

protocol in the Internet. After the inclusion of congestion
control in the 80’s, it has only undergone minor changes;
congestion control in TCP made the Internet stable and has
managed to keep it stable for all these years. On this ba-
sis, the notion of TCP-friendliness, which requires flows to
not exceed the bandwidth of a conforming TCP running un-
der comparable conditions, has been introduced. Applying
TCP-friendliness to all data transfers on the Internet would
ensure that all flows fairly share their bottleneck links and
the network’s stability is preserved.

There is, however, a flaw in this logic: data transfers are
not always of the same importance, i.e. the benefit from a
user’s point of view is not necessary equal for each of them.
Example scenarios include parallel file downloads, where a
user is more eager to obtain file A than file B, and situations
where a P2P application could disturb a streaming video.

In a common home network setup, where the narrow-band
access link (e.g., dial-up, DSL, etc.) is usually the bottle-
neck, the user’s own flows are actually only competing with
each other and not with “foreign” traffic. In such a situa-
tion, sharing the available bandwidth according to the user’s
needs is the only fairness notion that truly counts. While
TCP-friendliness could theoretically be neglected in such a
scenario, e.g. by controlling the sending rate with a simple
queuing scheme at the access router, doing so would however
be harmful when the bottleneck shifts, i.e. when congestion
would happen in other parts of the network. In such a case,
differentiated fairness on the bottleneck is about users com-
peting with each other, where some users might be willing
to pay more for getting a better quality of service.

A solution is to prioritize flows according to the user’s
preferences by making the sender’s congestion control more
or less aggressive. Since an aggregate of multiple TCP’s
is more aggressive than a single TCP, simply using several
flows in parallel for important data transfers has become
common. Users can manually initiate multiple transfers or
use a download tool or application level protocol which pro-
vides such a capability, e.g. GridFTP [2]. This method has
several disadvantages: data transfers must be multiplexed
onto individual TCP flows (e.g. by offering large files which
are split into several parts for easier parallel downloading).
Parallel flows increase overhead, as state information must
be kept for all the flows. Moreover, the granularity of ag-
gression is limited. If we introduce the notion of “n-TCP-
friendliness”, i.e. being as TCP-friendly as n TCPs, then
parallel TCPs require n to be a positive integer.

What would be needed is a n-TCP-friendly protocol which
allows for a wide range of choices for n and exhibits a smooth
sending rate, such that it can be used for a multitude of ap-
plications. We address this need by introducing MulTFRC,
a protocol which, based on the arguably most common TCP-
friendly real-time protocol TFRC [6], appears to realize n-
TCP-friendliness with much greater flexibility and precision
than any other protocol in the literature.

Like TFRC, MulTFRC is a rate based protocol. TFRC
uses the steady-state throughput equation from [12] to de-
rive the throughput of a TCP flow from measured network
conditions. For MulTFRC, we developed a similar equation
which yields the throughput of n parallel TCP flows. Since
it does not really matter for (Mul)TFRC whether this equa-
tion is calculated on the sender or the receiver side, it is easy
to use this protocol in situations where the prioritization is
carried out by the receiver (e.g. for the file A vs. file B
example discussed earlier). In the next section, we briefly

introduce the equation and show that it works accurately.
Then we present the MulTFRC protocol in section 3, fol-
lowed by an evaluation of its precision. Then we discuss
and compare our protocol with related work and conclude.

2. THE EQUATION
The equation in [12] provides the sending rate of a TCP

flow as a function of the round-trip time (RTT) and “loss
events” that a flow experiences, where a loss event is defined
as one or more packet loss occurrences during an RTT. For
extending this equation to multiple TCPs, it could be a first
thought to simply multiply the equation from [12] with n
— but this does not work because loss event probability
measurements of all n single flows would be needed. Since
MulTFRC is in fact only one flow that just behaves like n
flows, and since n should be a positive real number, it is
not possible to distinguish which of these n “virtual” flows a
packet belongs to, and it is therefore not possible to measure
the loss event probability of these (non-existent) flows.

We developed a new equation by following the derivation
in [12], but considering the throughput of n TCP flows de-
pending on the loss event probability of the cumulative flow
(denoted by pe). In a cumulative flow’s loss event, more
than one of the n flows can experience a loss event. We as-
sume that each lost packet belongs to a different flow, and
therefore the number of flows affected by a loss event of
the cumulative flow, denoted by j, is equal to the number
of packets lost in the loss event. It can be calculated as
j = pr/pe, where pr is the packet loss probability. Due to
lack of space we refer to [5] for a detailed derivation of the
equation and only present the final result here, in the form
of an algorithm for calculating the throughput of n flows.
We also enclose some key results regarding the validation of
its accuracy using simulations and real-life measurements.

In the algorithm, b is the number of packets acknowledged
by an ACK, RTT is the round-trip time and T is the initial
period of time (in a time-out phase) after which the sender
retransmits unacknowledged packets. The rest of the vari-
ables are defined in the text above.

As in [12] we model TCP, first, assuming just triple-duplicate
ACKs loss indications, and then we add the possibility that
some flows are in time-out. The TCP congestion avoidance
phase is observed in terms of rounds, i.e. in a round all flows
send their current window size before the next round starts
for all flows. Depending on the loss probability we calculate
the number of rounds between two loss events (denoted by
x in the algorithm) and the number of packets sent by all
flows in that period (1/pe), which leads to tp, the rate of all
flows without timeouts. To include timeouts, depending on
the packet loss probability, we calculate the average number
of flows that experience a timeout and are in the slow start
phase (denoted by q in the algorithm), the average duration
of a timeout period (z) and the average number of packets
sent by a flow that is in the timeout phase (r). In the end
the output of the algorithm is the throughput of n flows
including timeouts: ((n− q)/n) ∗ tp + q ∗ (r/z).

Algorithm 1. The throughput of n parallel flows [pkt/s]
if (j > n) { j = n }
x = jpeb(2j − n) +

√
(pebj(24n2 + pebj(n− j)2))/(6n2pe)

tp = 1/(pexRTT)
w = nx/(2b)(1 + 3n/j)
z = T (1 + 32p2

e)/(1− pe)
r = 1/(1− pe)
q = (pr/pe)n/w

if (q > n) { q = n }
if (qz/(xRTT) ≥ n) { q = n }
else { q = qz/(xRTT) }
return (1− q/n)tp + q(r/z)

With ns-2 simulations we showed that the equation works
well in a broad range of conditions. Real background traf-
fic can produce different distributions of loss events. These
events include isolated packet losses and burst losses with
variations of the length of the burst. All these loss distri-
butions influence the throughput of an aggregate of TCP
flows in a different way. We therefore validated the equa-
tion with uniformly distributed random loss as well as more
bursty loss, which we produced by varying the capacity of
a bottleneck link with a DropTail queue. For both sets of
simulations, we used the common “dumbbell” topology and
varied the loss percentage and, in the DropTail queue case,
the bottleneck capacity. A number of parallel TCP flows
were run, the throughput and the loss experienced by these
flows was measured. We used the measured loss as an input
parameter to calculate the throughput with our equation,
and we compared the result with the measured throughput.

Figure 1: Equation vs. ns-2, RED + uniform loss

In the first scenarios, the access links had a bandwidth
of 10 Gbit/s and a delay of 30 ms, whereas the bandwidth
and delay of the bottleneck link were 1 Gbit/s and 1 ms, re-
spectively. We added uniform random loss to the bottleneck
link, where we additionally avoided phase effects by using a
RED queue. According to the recommendation in [1], we al-
lowed ns-2 to automatically configure the RED parameters.
The amount of loss that was generated by the loss model
on the bottleneck link is the parameter that we varied. Fig-
ure 1 shows that our equation yields a good estimate of the
throughput of parallel TCP flows.

In the second set of simulations, a DropTail queue was
used on the bottleneck link, where the queue length was set
to the bandwidth × delay product. All links had a delay of
10 ms. The capacity of the access links was 1 Gbit/s. The
bottleneck capacity was changed to cause a varying amount
of loss. It had the values 1, 2, 4, 8, 16, 32, 64, 128 and
256 Mbit/s. Notably, using different bottleneck capacities
influences the RTT (by 26.7% in the 1 Mbit/s case and 0.1%
in the 256 Mbit/s case); this makes our result, shown in
figure 2, somewhat similar to a real-life test where packet
loss is a measured parameter.

Figure 2: Equation vs. ns-2, DropTail queue

We also validated our equation with real-life measure-
ments. We measured the throughput of n = 1..10 connec-
tions between two hosts; all connections started at the same
time. We sent data from our site in Austria to Ireland and
Texas and used web100 (http://www.web100.org), on our
site, for monitoring. Our host (Athlon64 3200+, 512 MB
RAM, 100 Mbit network card) had a Linux kernel version
2.6.17.1 and web100 version 2.5.11. Because of almost no
loss in the network we would have needed to transfer files of
1-2 GB to get sustained steady state TCP behavior. There-
fore we set the network card to work with only 10 Mbit/s.

The host in Ireland (149.157.192.252) ran Linux and the
following TCP parameters were set: window scaling was
turned on, the advertised window scaling value was 12, and
SACK was enabled. The measurements took from the 30th
of May 2008 (16:17) till the 1st of June 2008 (17:28). We
transmitted files of 70 MB using HTTP, opening n (1..10)
uploads at the same time. For each number n, the measure-
ment was run multiple times. Every transfer lasted at least
700 s (up to 1300 s).

The host in Texas (129.110.241.44) ran Linux and used the
following TCP parameters: window scaling was turned on,
the advertised window scaling value was 6, and SACK was
enabled. We measured starting from the 9th of May 2008
(15:33) till the 13th of May 2008 (15:35). We performed
the same set of HTTP file transfers as to Ireland. Each
measurement took at least 800s (up to 2100s).

The loss event probability in our real-life tests was mea-
sured in the same way as in our simulations (not more than
one loss event per RTT). Figure 3 shows that, with 5 flows,
our equation yields a good estimate of the throughput. The
deviation from the real-life measurements is larger with 10
flows, which we show here as a “worst case”; from our mea-
surements it seems that this error does not generally grow
with the number of flows and is bounded. We believe it
to be due to the different loss patterns that occur as flows
synchronize in the bottleneck queue, which may sometimes
be a bad match for the assumptions that our equation is
based upon. In general, our equation represents a trade-off
between precision and ease of use, as there are several other,
more precise yet significantly more complex models in the
literature; this is elaborated upon in [5].

(a) Innsbruck - Ireland measurements

(b) Innsbruck - Texas measurements

Figure 3: Real-life measurements

3. MULTFRC: DESIGN AND EVALUATION
Since the MulTFRC protocol is based on TFRC, many

input parameters for the rate calculation are measured in
the same way (RTT , T and b). The loss event probability
is measured for the cumulative flow. It is obtained as in
TFRC, counting just one loss event per RTT. To obtain a
smooth rate, the TFRC protocol uses the weighted average
of the last k loss intervals. In [6] and [7] k is set to 8; we use
the same setting for MulTFRC.

In [5] the number of packets lost in a loss event is cal-
culated using the approximation j = pr/pe (the real loss
probability divided by the loss event probability). Since it
is possible to precisely count the number of lost packets in a
loss event in the MulTFRC protocol, we use this as an input
for j instead. The same method for sample discounting is
used as for measuring the loss event probability.

Figure 4 illustrates that, because having a single n-TCP-
friendly flow eliminates the potential of individual TFRC
flows to harm each other, MulTFRC reacts faster to con-
gestion than TFRC. The figure shows the throughput over
time for a flow traversing a 15 Mbit/s, 20 ms RED bottle-
neck link with periodic loss from an ns-2 simulation. At the
beginning, loss was 1%, at the 5th second it increased to 10%
and at the 14th second it changed to 0.5%. To compare our
protocol with TFRC, we ran five separate simulations: one
TFRC flow, two TFRC flows at the same time, four TFRC
flows at the same time, one MulTFRC flow with n = 2,
and one MulTFRC flow with n = 4. As it can be seen the
responsiveness of MulTFRC does not change as n increases.

Our equation assumes that each lost packet belongs to a
different flow, which is rarely true in reality. As figure 5
shows, a MulTFRC flow with a large n is less affected by
this assumption (additionally, MulTFRC gets slightly less
throughput than TCP with n > 100.0 in this figure because
of the exceedingly high loss rate in this extreme case (more
than 15%)). To incorporate the possibility that more than
one packet belongs to the same flow, we assume that a packet
belongs to any of n flows with the same probability (1

n
).

The probability that a flow is not affected in a loss event

Figure 4: Dynamic behavior of MulTFRC

is equal to the probability that all j lost packets belong
to the other n − 1 flows: ((n − 1)/n)j . The probability p
that the flow is affected is 1 − (1 − 1/n)j . Therefore the
number of flows affected in a loss event with j lost packets
is n∗p. A comparison between the old and new j calculation
is shown in figure 5, where MulTFRC and TCP flows shared
a 32 Mbit/s, 20 ms RED bottleneck link.

Figure 5: TCP-friendliness of MulTFRC with old
and new calculation of j

We ran simulations with several network conditions in-
cluding RED and DropTail queuing, based on the simula-
tions used in [6], i.e. the same network parameters were
used. We evaluated the MulTFRC protocol with a range of
values for n, and in each simulation a MulTFRC flow was
run together with several TCP flows in a dumbbell topol-
ogy; the number of TCP flows was the same as MulTFRC’s
parameter n. Access links had a 100 Mbit/s capacity and
2 ms delay on the left side of the bottleneck link, and 1 ms
on the right-hand side of the bottleneck link. The impact of
MulTFRC on TCP with a RED queue is shown in figure 6
a). The slight increase at the top left corner of this figure
(minimum bottleneck capacity, maximum number of flows)
is due to the large loss rate of roughly 15%. We ran similar
simulations with a DropTail queue on the bottleneck link.
As figure 6 b) shows, MulTFRC does not significantly affect
the throughput of TCP flows.

If n ∈ N, the number of “virtual” flows affected in a loss
event must be between 1 and n (in algorithm 1: if(j >
n) then j = n). For 0 < n < 1, deriving the correct number
of these flows is not straightforward. We consider such a
flow to be just like one flow that is less aggressive. With this
assumption, the value for the number of flows affected in a
loss event must be 1. In a general case where n ∈ R+ the idea
is the same. For example, if n = 1.4, we can consider that we

a) RED queue at the bottleneck

b) DropTail queue at the bottleneck

Figure 6: TCP under the influence of MulTFRC

have two flows: one is a normal flow (n = 1), and the other
one is just a less aggressive flow (n = 0.4). Therefore the
upper limit for the number of affected flows can be obtained
by rounding up (dne) in the first line of algorithm 1.

To evaluate MulTFRC with n ∈ R+ we ran a MulTFRC
flow with 0.1 < n < 2 against a single TCP flow. Figure
7 shows results with a RED queue at the bottleneck link,
which had a delay of 20 ms and a capacity of 4 Mbit/s. The
behavior was similar in simulations with different bottleneck
parameters.

Figure 7: Changing n from 0.1 to 2

We also tested MulTFRC against standard TCP with a
real-life implementation, extending the original code pro-
vided by the TFRC authors (http://www.icir.org/tfrc/code).
The tests were run in a local testbed, all hosts run Linux
kernel version 2.6.17.1. We used tc command to introduce a
delay of 20 ms in both directions and to set the bandwidth to
32 Mbit/s. Figure 8 shows that the normalized throughput
is also close to 1 in real-life tests.

Figure 8: Real-life tests: MulTFRC vs. TCP

The Coordination Protocol (CP) is developed on the basis
of TFRC, with the intention of behaving like n TFRC flows.
The underlying idea is to multiply the equation from [12]
with n in the protocol. As the authors of [11] have shown,
and as we have argued in section 2, this is not enough be-
cause the loss event rate of a single flow share is not the
same as the loss event rate of the cumulative flow. They
therefore extended this concept by considering the n emu-
lated flows as so-called “flow shares” and using a stochastic
technique for filtering packets. The goal of this method is to
determine which packets belong to a single flow share, and
then use this flow share to calculate the loss event rate. For
CP, it is explicitly assumed that n is always greater than 1;
therefore this protocol would not work for 0 < n < 1.

Because of using a stochastic technique, this protocol fluc-
tuates more than ours. This is shown in figure 9, which was
generated using the original code that was provided to us
by the authors of CP. We used the same setup as the one
that we used for testing smoothness in section 3; MulTFRC
with n = 4 and CP with 4 flow shares traversed the same
bottleneck link with periodic loss.

Figure 9: Smoothness of MulTFRC and CP

Since CP is based on simply multiplying the equation in
TFRC with n, any error that the equation produces will be
amplified as n grows. On the other hand, because of the
nature of our equation from [5], our protocol works even
better with an increasing number of flows. Figure 10 shows
results of running CP against a number of TCPs and running
MulTFRC against a number of TCPs with the simulation
setup that we already used for figure 5. With CP, multiple
runs of the same setup yield significantly different results.

We tested MulTCP [4] in the same simulation setup as CP,
using an update that we made to the code that is available

Figure 10: MulTFRC vs. TCP and CP vs. TCP
with a larger number of flow shares

under“contributed code”via the main ns-2 webpage to make
it work with the most recent version of ns-2. As stated in [4]
and as our comparison shows, MulTCP performs reasonably
well with values up to n = 10. This is shown in figure 11.
This figure was generated using the same simulation setup as
for figure 9, we are just zooming into the relevant range. The
figure also shows Stochastic TCP [8], which is another pro-
tocol that we tested using the code provided by the authors.
This protocol, which partitions a single congestion window
into a set of “virtual streams” that are stochastically man-
aged as individual TCP streams, was built for high-speed
networks; in our simulations with a smaller bandwidth its
performance was poor.

Figure 11: MulTFRC, MulTCP and Stochastic TCP

4. RELATED WORK
We already discussed a few protocols which are related to

ours: MulTCP, Stochastic TCP and CP. Like CP, Probe-
Aided MulTCP (PA-MulTCP) [9] was proposed as a means
to control aggregates of end-to-end flows between two inter-
mediate network nodes. As its name suggests, it is based on
MulTCP, and improves upon it by using probes. The goal of
these probes is to determine a loss rate which is closer to the
loss rate experienced by a real TCP than the loss rate of the
original MulTCP. The loss rate that is normally experienced
by MulTCP is smaller than the loss rate of n standard TCP
flows, making MulTCP too aggressive. The probe based loss
rate measurement effectively adds another control loop to
the protocol, which is used to impose an upper limit on the
window size of the already existing (MulTCP-like) one. We
did not run simulations with PA-MulTCP because the orig-
inal code was not available and because its applicability is
limited by the overhead of using an additional control loop.
MulTFRC, on the other hand, was designed to be a general
purpose protocol with a broad range of usage scenarios.

MPAT [14] is another mechanism that is concerned with
controlling aggregates. Unlike PA-MulTCP and CP, how-
ever, MPAT maintains the control loops of individual TCP
flows and lets them share their congestion state. In the ex-
ample in [14], if two TCP flows would be allowed to send 5
packets each but the bandwidth should be apportioned ac-
cording to a 4:1 ratio, MPAT could allow one flow to send
8 packets and let the other flow send 2. Such differentiation
between flows is a way to provide Quality of Service via con-
gestion control, and this is also done in OverQoS [15], albeit
with MulTCP. While we believe that MulTFRC could also
be used for this purpose, we consider a discussion of such
usage to be beyond the scope of this paper.

On the extreme end of “friendliness” towards the network,
several mechanisms for so-called “less-than best effort” be-
havior (which is the same as our 0 < n < 1 case, but with
a possibly unkown value of n under this constraint) have
been proposed. TCP Nice [16], for example, is a variant of
TCP Vegas [3] with a more conservative congestion control
behavior. Just like these two algorithms, TCP Low Priority
(TCP-LP) [10] relies on increasing delay as an indicator of
imminent congestion, and defines a rate control method that
lets the end system back off earlier than standard TCP.

Since increasing delay is an effect that can be measured
earlier than packet loss or ECN marking (which are the nor-
mal congestion indicators of standard TCP), relying on it
is a common theme in such work. This is not the case for
MulTFRC with 0 < n < 1. Therefore, our protocol is likely
to be more aggressive than these alternatives if they share
a bottleneck at the same time; on the positive side, this
aggression is tunable in MulTFRC.

5. CONCLUSION
We have introduced MulTFRC, a protocol which realizes

n-TCP-friendliness with n ∈ R+ while showing a smooth
sending rate. Simulations and real-life experiments (which
were not carried out with our“best competitor”, CP) showed
very encouraging results, indicating that MulTFRC could
indeed be used as the general purpose protocol that we in-
tended it to be. In order to support this claim, we plan
to carry out Internet experiments with our real-life imple-
mentation, which we are currently refining to incorporate
retransmissions of lost packets. This is necessary because,
other than TFRC, our protocol should be applicable for non-
real-time data transfers too.

Another item on our agenda for future work is related
to the dynamic behavior of TFRC itself. The authors of
[13] state that there can be an imbalance in the long-term
throughput of TFRC and TCP. This is mainly attributed to
the fact that the loss rate which is measured by TFRC flows
can be different from the loss rate which is measured by TCP
flows. Since this problem is very similar to the problem of
MulTCP that is fixed in PA-MulTCP [9], it seems to be log-
ical that the PA-MulTCP approach of adding an additional
control loop could also be applied to TFRC and MulTFRC.
While it was not our goal to fix an inherent problem of TFRC
up to now, doing so is in our interest because MulTFRC
naturally inherits such properties of TFRC. We therefore
plan to investigate this possibility as a next step. The
ns2 MulTFRC code is available at http://dps.uibk.ac.at/

˜dragana/mulTFRC.html.

Acknowledgments
This work was partially funded by the EU IST project EC-
GIN under the contract STREP FP6-2006-IST- 045256. We
would also like to thank David E. Ott and Thomas J. Hacker
for providing us with their simulation code, Andrea Fuma-
galli and Doug Leith for letting us access their sites for mea-
surements, and Grenville Armitage for useful feedback.

6. REFERENCES
[1] RED parameters:

http://icir.org/floyd/red.html#parameters.

[2] W. Allcock. GridFTP: Protocol extensions to FTP for
the grid. Technical report, Open Grid Forum, 2003.

[3] L. Brakmo, S. O’Malley, and L. Peterson. TCP Vegas:
New techniques for congestion detection and
avoidance. In ACM SIGCOMM ’94, pages 24–35.

[4] J. Crowcroft and P. Oechslin. Differentiated
end-to-end internet services using a weighted
proportional fair sharing tcp. SIGCOMM Comput.
Commun. Rev., 28(3):53–69, 1998.

[5] D. Damjanovic, M. Welzl, M. Telek, and W. Heiss.
Extending the TCP Steady-State Throughput
Equation for Parallel TCP Flows. Technical Report 2,
University of Innsbruck, Institute of Computer
Science, DPS NSG Technical Report, August 2008.
http://dps.uibk.ac.at/̃ dragana/mulEQ-TechRep.pdf

[6] S. Floyd, M. Handley, J. Padhye, and J. Widmer.
Equation-based congestion control for unicast
applications. In SIGCOMM ’00, pages 43–56.

[7] S. Floyd, M. Handley, J. Padhye, and J. Widmer. TCP
Friendly Rate Control (TFRC): Protocol Specification.
RFC 5348 (Proposed Standard), Sept. 2008.

[8] T. J. Hacker and P. Smith. Stochastic TCP: A
Statistical Approach to Congestion Avoidance. In
PFLDnet 2008, Manchester, GB.

[9] F.-C. Kuo and X. Fu. Probe-Aided MulTCP: an
aggregate congestion control mechanism. SIGCOMM
Comput. Commun. Rev., 38(1):17–28, 2008.

[10] A. Kuzmanovic and E. W. Knightly. TCP-LP:
low-priority service via end-point congestion control.
IEEE/ACM Trans. Netw., 14(4):739–752, 2006.

[11] D. E. Ott, T. Sparks, and K. Mayer-Patel. Aggregate
Congestion Control for Distributed Multimedia
Applications. In IEEE Infocom 2004, Hong Kong.

[12] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose.
Modeling TCP throughput: a simple model and its
empirical validation. In SIGCOMM ’98, pages
303–314. ACM Press, 1998.

[13] I. Rhee and L. Xu. Limitations of equation-based
congestion control. In SIGCOMM ’05, pages 49–60,
New York, NY, USA, 2005.

[14] M. Singh, P. Pradhan, and P. Francis. MPAT:
aggregate TCP congestion management as a building
block for Internet QoS. In ICNP 2004, pages 129–138,
Berlin, Germany.

[15] L. Subramanian, I. Stoica, H. Balakrishnan, and R. H.
Katz. OverQoS: an overlay based architecture for
enhancing Internet QoS. In NSDI’04, Berkeley, USA.

[16] A. Venkataramani, R. Kokku, and M. Dahlin. TCP
Nice: a mechanism for background transfers. SIGOPS
Oper. Syst. Rev., 36(SI):329–343, 2002.

